AQA
 Model
 Solutions

Please write clearly in block capitals.

Centre number

Candidate number \square
Surname \qquad
Forename(s) \qquad
Candidate signature \qquad

GCSE

MATHEMATICS

Higher Tier
 Paper 2 Calculator

Thursday 7 June 2018
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
$24-25$	
$26-27$	
$28-29$	
TOTAL	

Advice

- In all calculations, show clearly how you work out your answer.

1 Here is a circle.

Circle the word that describes the shaded part.

2 Circle the number that is in standard form.

number that is in standard form.
0.25×10^{4}
6×10^{7}
whole number
1020^{-3}

$1 \leqslant x<10$

Turn over for the next question

$y: x$
$1 \frac{1}{2}: 1$
(

5 Match each sequence to its description.
One has been done for you.

Answer No, the population does not increase by the same amount.

Turn over for the next question

6 The table shows information about the population of a city.

Population in 2001	Population in 2011
420000	480000

Liam claims,
"From 2011 to 2021 the population of the city will increase by the same percentage as from 2001 to 2011"

He works out,
population increase from 2001 to $2011=480000-420000$

	$=60000$	Increase
population in 2021	$=480000+60000 \quad$between	
	$=540000$	2011 and
2021		

Does the population of 540000 match his claim?
You must show your working.
$\frac{60000}{420000} \times 100=14.3 \%$
There is a 14.3% increase in population between 2001
and 2011.
$\frac{60000}{480000} \times 100=12.5 \%$
There is only a 12.5% increase between 2011 and
2021.

7 On three days, Ali throws darts at a target.
Here are his results.

	Number of throws	Number of hits	Number of misses
Monday	20	15	5
Tuesday	30	22	8
Wednesday	40	17	23
Total	90	54	36

7 (a) Work out two different estimates for the probability of Ali hitting the target.
Probability of hitting

$$
=\frac{\text { no. of hits }}{\text { no. of throws }}
$$

the target
\qquad
\qquad
\qquad
Answer \qquad and
22 30

7 (b) Which of your two answers is the better estimate for the probability of Ali hitting the target?
Give a reason for your answer.

Answer $\frac{22}{30}$
Reason Because this probability was calculated from a greater number of throws.

9 The length of each side of a regular pentagon is 8.4 cm to 1 decimal place.

9 (a) Complete the error interval for the length of one side.

Would round to 8.4 at 1 dp.

\qquad $\mathrm{cm} \leqslant$ length $<$ \qquad 8.45 cm

9 (b) Complete the error interval for the perimeter.
$8.35 \times 5=41.75 \quad 8.45 \times 5=42.25$
$41.75 \mathrm{~cm} \leqslant$ perimeter $<42.25 \mathrm{~cm}$

A container is a hemisphere of radius 30 cm

Sand fills the container at a rate of $4000 \mathrm{~cm}^{3}$ per minute.
Does it take less than a quarter of an hour to fill the container?
You must show your working.

$$
\begin{aligned}
& \text { volume of container }=\frac{1}{2} \times \frac{4}{3} \times \pi \times(30)^{3} \\
& \\
& =\frac{2}{3} \times \pi \times 27000 \\
& \\
& =18000 \pi \mathrm{~cm}^{3} \\
& \begin{aligned}
& \frac{18000 \pi \mathrm{~cm}^{3}}{4000 \mathrm{~cm}^{3} / \mathrm{min}}=\frac{9}{2} \pi \mathrm{~min} \\
& \text { rate } 7
\end{aligned} \\
& \qquad \begin{aligned}
\frac{9}{2} \pi & =14.1 \mathrm{~min}<\frac{1}{4} \mathrm{hr}=\frac{1}{4} \times 60=15 \mathrm{~min}
\end{aligned}
\end{aligned}
$$

\qquad

Answer Yes, as $14.1<15$

11 Two ordinary fair dice are rolled.
11 (a) Complete the tree diagram.

1st dice

2nd dice

11 (b) Work out the probability that both dice land on a number less than 3

$$
\frac{1}{3} \times \frac{1}{3}=\frac{1}{9}
$$

\qquad

11 (c) Work out the probability that exactly one of the dice lands on a number less than 3

$$
\left(\frac{1}{3} \times \frac{2}{3}\right)+\left(\frac{2}{3} \times \frac{1}{3}\right)=\frac{2}{9}+\frac{2}{9}=\frac{4}{9}
$$

\qquad
\qquad
\qquad

Answer 4/9

Turn over for the next question

12 A straight line is drawn on the centimetre grid.

Fay assumes that the scale is 1 cm represents 1 unit.
12 (a) Use her assumption to work out the gradient of the line.
gradient $=\frac{4}{8}=\frac{1}{2}$
η
change in y
Change in x
Answer
$\frac{1}{2}$

12 (b) In fact, the scale is 1 cm represents 2 units.
Which statement is correct?
Tick one box.

The answer to part (a) is too big

The answer to part (a) stays the same

The answer to part (a) is too small

1 unit $=0.5 \mathrm{~cm}$
gradient $=\frac{4 \times 0.5}{8 \times 0.5}=\frac{1}{2}$
Turn over for the next question

13 Show that, for $x \neq-1$
$\frac{8 x^{2}-8}{4 x+4}+\begin{aligned} & \text { simplifies to the form } \\ & 4(x+1)\end{aligned} \quad \frac{8(x+b \quad \text { where } a \text { and } b \text { are integers. }}{4(x+1)}=2(x-1)$
[3 marks]
$*$ difference of 2 squares.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

14 The scale drawing represents a garden.
Water from a sprinkler at P reaches up to 20 metres from P.
Water from a sprinkler at Q reaches up to 25 metres from Q.
$P: 20 \mathrm{~m}: 4 \mathrm{~cm} \longleftarrow$ Draw an arc radius 4 cm
$Q: 25 \mathrm{~m}: 5 \mathrm{~cm}$ from P, etc.

Using a pair of compasses,
show the region that water from both sprinklers reaches.

Turn over for the next question

1500 men and 100 women took a test.
Men Median Interquartile range Range Women 28 7.5 31 30 9 37

Using this data, which statement must be true?
Tick one box.

Men had a higher average score than women
IQR is lower for men, so data is less spread
 out.
Men had more consistent scores than women

A woman had the highest score

A man had the lowest score

16 Some concrete has volume $3.8 \mathrm{~m}^{3}$
16 (a) The density of the concrete is $2400 \mathrm{~kg} / \mathrm{m}^{3}$
Work out the mass of the concrete.
densit $y=\frac{\text { mass }}{\text { volume }} ; \quad$ mass $=$ density \times volume
$=2400 \times 3.8$
$=9120 \mathrm{~kg}$

Answer \qquad kg

16 (b) The $3.8 \mathrm{~m}^{3}$ of concrete is made into the shape of a cylinder.
The base has radius 0.5 metres.

Work out the height of the cylinder.
Volume $=3.8 \mathrm{~m}^{3} \quad\left(\begin{array}{l}\text { volume } \\ \text { of cylinder }\end{array}=\pi r^{2} h\right)$
$3.8=\pi \times(0.5)^{2} \times h$
$h=\frac{3.8}{0.5^{2} \times \pi}=4.8 \mathrm{~m}$

Answer \qquad 8 m

	$=2400 \times 3.8$
	$=9120 \mathrm{~kg}$

$$
h=\frac{3.8}{0.5^{2} \times \pi}=4.8 \mathrm{~m}
$$,

17 A ball is thrown vertically upwards.
The graph shows the height of the ball above the ground after it is thrown.

Height of ball

17 (a) For how many seconds is the ball at a height of more than 2 metres?

Answer

 317 (b) After how many seconds is the ball at instantaneous rest when it is in the air?
[1 mark]
(Instantaneous rest at turning point because gradient $=\frac{\mathrm{H}}{T}=0$,
1.5
(Instantaneous rest at turning point because gradient $=\frac{\mathrm{H}}{T}=0$, So Speed $=0 \mathrm{~m} / \mathrm{s}$)

17 (c) Work out the average speed of the ball when it is moving downwards.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{4.6-0}{3.5-1.5}=\frac{4.6}{2}=2.3
$$

Answer

2.3
m / s

18 The solution of $\quad 3^{x}=300$ lies between two consecutive integers.
Work out the two integers.
$\left.\begin{array}{l}3^{4}=81 \\ 3^{\frac{5}{-}}=243 \\ 3^{\frac{6}{2}}=729\end{array}\right\} 243<300<729$

Answer \qquad and \qquad 6

Turn over for the next question

19 A pentagon is made from a square and an isosceles triangle.

Work out the perimeter of the pentagon.
work out the length of a side: $\cos 35=\frac{6}{L}$ $L=\frac{6}{\cos 35}=7.3 \mathrm{~cm}$

Perimeter $=(3 \times 12)+(2 \times 7.3)$
$=36+14.6$

$$
=50.6 \mathrm{~cm}
$$

Answer \qquad 50.6 cm

20 Here is an inflated swimming ring with dimensions in centimetres.

The volume of the ring, $V \mathrm{~cm}^{3}$, is given by

$$
V=0.25 \pi^{2}(b-a)^{2}(b+a)
$$

Work out the volume when $a=20$ and $b=30$
Give your answer to 3 significant figures.

$$
\begin{aligned}
b-a= & 30-20=10 \quad b+a=30+20=50 \\
V & =0.25 \pi^{2}(10)^{2}(50) \\
& =0.25 \pi^{2}(100)(50) \\
& =1250 \pi^{2}=12300 \mathrm{~cm}^{3}(35 f)
\end{aligned}
$$

Answer \qquad cm^{3}

21 Liz and Tia are walking towards a shop along different straight paths.
The diagram shows their positions at 2 pm

21 (a) Assume they walk at the same speed.
Who will arrive at the shop first?
You must show your working.

Distance Tia walks: $x^{2}=80^{2}+60^{2}-2(80)(60) \cos 757$

	cosine rule $\Rightarrow a^{2}=b^{2}+c^{2}-2 b \cos A$
x^{2}	$=6400+3600-9600 \cos 75$
x^{2}	$=7515$
x	$=86.7 \mathrm{~m}>80 \mathrm{~m}$

They are walling at the same speed so Liz arrives first.

Answer Liz

21 (b) In fact, Liz walks at a faster speed than Tia.
How does this affect the answer to part (a)?

Liz will Still arrive first.
\qquad

22 A circle, centre O, passes through (5, 0).

What is the equation of the circle?
Circle your answer.

$$
\begin{aligned}
\text { radius } & =5 \\
\text { center } & =0,0
\end{aligned}
$$

$x^{2}+y^{2}=100$
$r^{2}=25$

Turn over for the next question

23 Solids X and Y are similar.
X has volume $64 \mathrm{~cm}^{3}$
Y has volume $343 \mathrm{~cm}^{3}$
The surface area of X is $176 \mathrm{~cm}^{2}$
Work out the surface area of Y .

$$
\begin{array}{ll}
x=\sqrt[3]{64} & y=\sqrt[3]{343} \\
\text { length }=4 & \text { length }=7 \\
\text { ratio } & \text { ratio }
\end{array}
$$

$$
\begin{array}{ll}
\text { Area } \Rightarrow 4^{2}=16 & \text { Area } \Rightarrow 7^{2}=49 \\
\text { ratio } & \text { ratio }
\end{array}
$$

$$
16 \times(11)=176 \quad \therefore \quad 49 \times(11)=539 \mathrm{~cm}^{3}
$$

\qquad
\qquad

Answer \qquad 539 cm^{2}

24 A tank is a cuboid measuring 50 cm by 35 cm by 20 cm All lengths are to the nearest centimetre.

A container has a capacity of exactly 34 litres.
1 litre $=1000 \mathrm{~cm}^{3}$
Which has the greater capacity?
Tick one box.

Show working to support your answer.
$49.5 \leqslant 50 \mathrm{~cm}<50.5$
$34.5 \leqslant 35 \mathrm{~cm}<35.5$
$19.5 \leqslant 20 \mathrm{~cm}<20.5$
\qquad
Smallest capacity of tank $=49.5 \times 34.5 \times 19.5=33301.125 \mathrm{~cm}^{3}$ largest capacity of tank $=50.5 \times 35.5 \times 20.5=36751.375 \mathrm{~cm}^{3}$ So capacity of tank could be Smaller or larger than container $=34 \times 1000 \quad 34000 \mathrm{~cm}^{3}$.

$$
=34000 \mathrm{~cm}^{3}
$$

Turn over for the next question

25 The Venn diagram shows some information about 150 students.
$\xi=150$ students
C = students who study Chemistry
$\mathrm{P}=$ students who study Physics

The probability that a Physics student, chosen at random, also studies Chemistry is $\frac{5}{12}$ One of the 150 students is chosen at random.

Work out the probability that the student does not study either Chemistry or Physics.
$\begin{aligned} & \text { Probability of studying } \\ & \text { chemistry given studies }\end{aligned}=\frac{x}{x+35}=\frac{5}{12}$
physics.

CROSS MULTIPLY	$=5(x+35)$
$12 x$	$=5 x+175$
$7 x$	$=175$
x	$=\frac{175}{7}=25$

\qquad
$150=47+x+35+y \Rightarrow 150-47-25-35=43$
\qquad
Answer $\frac{43}{150}$

26 A curve has equation $y=4 x^{2}+5 x+3$
A line has equation $\quad y=x+2$
Show that the curve and the line have exactly one point of intersection.
Do not use a graphical method.
[4 marks]
Equate the two equations:
$-(x+2)\binom{4 x^{2}+5 x+3=x+2}{4 x^{2}+4 x+1=0}-(x+2)$
$x=\frac{-4 \pm \sqrt{(4)^{2}-4(4)(1)}}{2(4)} \quad \sqrt{16-16}=\sqrt{0}=0$
$=\frac{-4 \pm \sqrt{16-16}}{8}=\frac{-4 \pm 0}{8}=\frac{-4}{8}=-\frac{1}{2}$
There is only one solution, so there is only one point of intersection.

Turn over for the next question

PhysicsAndMathsTutor.com
28

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{f}(x)=5-x \quad \text { and } \quad \mathrm{g}(x)=3 x+7
$$

28 (a) Simplify $f(2 x)+g(x-1)$

$$
f(2 x)=5-(2 x)=5-2 x \quad \begin{aligned}
g(x-1) & =3(x-1)+7 \\
& =3 x-3+7 \\
& =3 x+4
\end{aligned}
$$

So, $f(2 x)+g(x-1)=(5-2 x)+(3 x+4)=x+9$

Answer \qquad

$$
x+9
$$

28 (b) Solve $\mathrm{g}^{-1}(x)=2 x$
Find $g^{-1}(x)$:

$$
y=3 x+7
$$

$y-7=3 x \quad$ Re arrange to find x

$$
\frac{y-7}{3}=x
$$

replace y with x.
so $g^{-1}(x)=\frac{x-7}{3} \quad \frac{x-7}{3}=2 x$

$$
\left.\begin{array}{rl}
x-7 & =3(2 x) \\
x-7 & =6 x \\
\div 5(-7 & =5 x \\
-7 / 5
\end{array}\right) \div 5
$$

END OF QUESTIONS

