AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

MATHEMATICS

Higher Tier

Monday 6 November 2017 Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
$24-25$	
$26-27$	
$28-29$	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided

1 Circle the fraction that is equivalent to 3.875

$$
\frac{15}{4} \quad \frac{29}{8} \quad \frac{31}{8}
$$

$2 \quad$ What is 50 as a percentage of 20 ?
Circle your answer.

$$
10 \%
$$

$$
\begin{gathered}
\frac{50}{20} \times 100=2.5 \times 100=\frac{250 \%}{[1 \mathrm{mark}]} \\
40 \%
\end{gathered}
$$

3 Circle the point that does not lie on the curve $y=x^{3}$

$$
\begin{aligned}
& \left(-\frac{1}{2},-\frac{1}{8}\right) \\
& \left.\left.x=\frac{1}{3}, y=\left(\frac{1}{3}\right)^{(5,125)}=\frac{1}{27}, \frac{1}{9}\right)\right) \\
& \left(\frac{1}{3}, \frac{1}{27}\right) \\
& \text { so the point }\left(\frac{1}{3}, \frac{1}{9}\right) \text { does not lie } \\
& \text { on the line. }
\end{aligned}
$$

4 Which one of these is a unit of density?
Circle your answer.

$$
\begin{array}{r}
\text { density }= \\
\mathrm{m}^{2} / \mathrm{kg}
\end{array}
$$

$$
\begin{aligned}
& \frac{\text { mass }}{\text { volume }}=\frac{\mathrm{kg}}{\mathrm{~m}^{3}} \text { so } \mathrm{kg} / \mathrm{m}^{3} \\
& \left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \mathrm{m}^{3} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{kg} / \mathrm{m}^{2}
$$

5
Solve

$$
4(3 x-2)=2 x-5
$$

Turn over for the next question

6 (a) Give one example to show the volume is $24 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \text { Volume }=\text { length } \times \text { area } \\
& \text { take the point }(2,12) \\
& \text { volume }=12 \times 2=24 \mathrm{~cm}^{3}
\end{aligned}
$$

6 (b) The diagram shows a prism with volume $24 \mathrm{~cm}^{3}$
The height of the triangular cross section is h.

Work out the height, h. Volume of prism = area of \times length [3 marks]
area of triangle $=\frac{6 \times h}{2}=3 \mathrm{~h}$
volume: $24=3 h \times 5$

$$
\frac{24}{3 \times 5}=h
$$

$h=1.6 \mathrm{~cm}$
Answer \qquad cm

Turn over for the next question

7 Describe fully the single transformation that maps triangle A to triangle B.

Enlargement, scale factor $\frac{1}{3}$
centre $(5,1)$

The table shows information about the distances walked by 120 students on their way to school one week.

Distance, x (miles)	Frequency	midpoint of distance	distance x frequency
$0<x \leqslant 5$	20	2.5	$2.5 \times 20=50$
$5<x \leqslant 10$	48	7.5	$7.5 \times 48=360$
$10<x \leqslant 15$	30	12.5	$12.5 \times 30=375$
$15<x \leqslant 20$	22	17.5	$17.5 \times 22=385$

Work out an estimate for the mean distance.
total distance:

$$
\begin{aligned}
& 50+360+375+385=1170 \\
& \text { mean }=\frac{1170}{120}=9.75 \text { miles }
\end{aligned}
$$

Answer \qquad 9.75 miles

Turn over for the next question

$$
\begin{aligned}
& \text { oOH CAHCOA } \\
& \tan x=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

\qquad
\qquad

Answer \qquad 23.2 degrees

Answer 35

11 Circle the expression that is equivalent to $\frac{3 x^{2}}{6 x^{2}+3}$
[1 mark]
$\frac{3\left(x^{2}\right)}{3\left(2 x^{2}+1\right)}=\frac{x^{2}}{2 x^{2}+1}$

Turn over for the next question

12 The table shows information about the UK and Germany.

	Population	Area (square miles)
UK	64000000	95000
Germany	82000000	140000

Population density $=\frac{\text { population }}{\text { area }}$
Compare the population densities of the UK and Germany.

$673.7>585.7$. so pqualation density is greater in the UK.

Two straight lines intersect at point P.

Not drawn accurately
$\begin{array}{ll}\text { Circle the coordinates of } P . & y=3 x=-1 \\ x=-\frac{1}{3} \text { and } y=-1 \\ (-3,-1) & \left(-1,-\frac{1}{3}\right) \quad(-1,-3)\end{array}$

Turn over for the next question

14 A ball is thrown from a height of 15 metres.
It bounces to height h_{1}, then to height h_{2} as shown.

Not drawn accurately
h_{1} is three quarters of the original height.
14 (a) Jack expects h_{2} to be three quarters of h_{1}
Work out the value of h_{2} that he expects.

h_{2}	$=15 \times \frac{3}{4} \times \frac{3}{4}$
h_{2}	$=15 \times \frac{9}{16}$
	$=8.4375 \mathrm{~m}$

\qquad
\qquad

Answer \qquad 8.4375
metres

14 (b) In fact, h_{2} is two thirds of h_{1}
How does this affect the answer to part (a)?
Tick a box.

The ball bounced higher than he expected

The ball bounced lower than he expected

Show working to support your answer.

15 Mirek invests $£ 6000$ at a compound interest rate of 1.5% per year.
He wants to earn more than $£ 1000$ interest.
Work out the least time, in whole years, that this will take.
Compound interest of 1.5% per year so multiply by 1.015 $6000 \times 1.015^{n}>7000$ $n=10 \rightarrow 6963.24<7000$ $n=11 \longrightarrow 7076.69>7000$
so takes 11 years

Answer \square years

16 (a) Factorise fully $9 y^{3}-6 y$
\qquad
\qquad
\qquad
Answer $3 y\left(3 y^{2}-2\right)$

16 (b) Factorise $3 x^{2}-22 x+7$
\qquad
Answer $(3 x-1)(x-7)$

$$
\text { check: } 3 x^{2}-21 x-x+7=3 x^{2}-22 x+7
$$

Turn over for the next question

17 Work out the area of the parallelogram.

Not drawn accurately
[3 marks]

Answer_ $182.6 \mathrm{~cm}^{2}$

18 (a)

Which of these represents the shaded region? Circle your answer. shaded area is A and not B.
A
B^{\prime}

$A \cup B^{\prime}$

18 (b)

Which of these represents the shaded region?
Circle your answer.

The length of a rectangle is five times the width.
The area of the rectangle is $1620 \mathrm{~cm}^{2}$
Not drawn accurately

Work out the width of the rectangle.
area $=$ length \times width
$1620=5 w \times w$
$1620=5 \omega^{2}$

$$
\begin{aligned}
324 & =\omega^{2} \\
\omega & =\sqrt{324}=18 \mathrm{~cm}
\end{aligned}
$$

Answer
 18 cm

A stone is thrown upwards with a speed of v metres per second.
The stone reaches a maximum height of h metres.
h is directly proportional to v^{2}
When $v=10, h=5$
Work out the maximum height reached when $v=24$
\qquad

Answer \qquad 28.8 m

Turn over for the next question

21 (a) Meera is using a graphical method to solve $2 x^{2}-3 x=0$
She draws the graph of $y=2 x^{2}$ and a straight line graph on the same grid.
Here is the graph of $y=2 x^{2}$

Complete her method to solve $2 x^{2}-3 x=0$
[2 marks]
Draw the graph of $y=3 x$

$$
x=0 \text { and } x=1.6
$$

\qquad
\qquad

$$
\text { Answer } x=0 \text { and } x=1.6
$$

21 (b) Levi is solving $2 x^{2}+5 x=0$
He uses this method.

$$
\begin{array}{rlrl}
2 x^{2}+5 x & =0 & & \text { subtract } 5 x \text { from both sides } \\
2 x^{2} & =-5 x & & \text { divide both sides by } x \\
2 x & =-5 & & \text { divide both sides by } 2 \\
x & =-2.5 &
\end{array}
$$

Evaluate his method and his answer.
\rightarrow cannot divide by x because it could be 0
\rightarrow he should have factorised and he
would have found that $x=0$ aspell as $x=-2.5$

Turn over for the next question

22 The cross section of an earring is a semicircle, centre C, radius 25 mm The earring is black and white.

The shaded area is black.

Not drawn accurately

Sector $B C D$ is white and has radius 12 mm

Not drawn accurately

Is more than 20% of the semicircle white?
You must show your working.
\qquad
area of white sector:

$$
\frac{150}{360} \times \pi \times 12^{2}=60 \pi
$$

percentage of semicircle
that is white $=\frac{60 \pi}{312.5 \pi}=0.192$
\qquad
$0.192 \times 100=19.2 \%$
\qquad
\qquad
\qquad
nome because 19.2%
is
less than
20%

Turn over for the next question

Members of a tennis club

There are 30 members with $A<20$
There are 12 members with $65 \leqslant A<80$
There are no members with $A \geqslant 80$
23 (a) Complete the histogram.
for the $0<A<20$ bar,
\qquad
\qquad
$\frac{12}{15}=0.8$

23 (b) Work out the total number of members of the club.

Answer 173

Turn over for the next question

Beth ran a 200 metre race.
Here is a graph of the first 8 seconds of her race.
She completed the race at a constant speed of $9 \mathrm{~m} / \mathrm{s}$
Speed-time graph for Beth

Amy completed the race in 27 seconds.
Did Beth fish before Amy? distance ran by Beth in You must show your working. first 8 s :
distance left to run $=200-36=164 \mathrm{~m}$ speed $=\frac{\text { distance }}{\text { time }}$ time $=\frac{164}{9}=18.22$ Beth's total time $=8+18.22=26.225$ $26.22<27$ before Any.

Not drawn accurately

A force of 345 Newtons is applied to the floor.
The force is to the nearest 5 Newtons.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

Work out the upper bound of the pressure.
Give your answer to 4 significant figures.
You must show your working.
\qquad
342.5 S force < 347.5 to get upper bound of pressure, biggest force smallest area
\qquad

Answer \qquad 21.46 $\mathrm{N} / \mathrm{m}^{2}$
$A B C D E$ is a pentagon.

Show that $B C D E$ is a parallelogram.

$C B$ is equal and parallel to $D E$
so $B C D E$ is a parallelogram.
\qquad

Solve

$$
\frac{x}{4}-\frac{2 x}{x+2}=1
$$

Give your solutions to 2 decimal places.
You must show your working.
\qquad
quadratic formula: $x=-b \pm \sqrt{b^{2}-4 a c}$

$$
\begin{aligned}
& x=\frac{10 \pm \sqrt{10^{2}-4(1 \times-8)}}{2} 2 a \\
& x=\frac{10 \pm 2 \sqrt{33}}{2}=5 \pm \sqrt{33} \\
& \text { Answer } x=10.74 \text { and } x=-0.74
\end{aligned}
$$

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

