AQA
 Model Solutions

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

MATHEMATICS

Higher Tier

Paper 2 Calculator

Thursday 8 November 2018 Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
TOTAL	

- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.
$1 \quad$ What does $(A \cap B)$ represent in $\quad P(A \cap B)$?
Circle your answer.

$$
n=\text { intersect }=\underline{A N D}
$$

$$
A \cap B=A \underline{A N D} B
$$

A or B or both
not A and not B

A but not B
A and B
[1 mark]

$(3,4)$
$(3,5)$
$(6,8)$

3 Which of these is a geometric progression?
Circle your answer. multiply to calculate next term

$$
\begin{array}{llll}
1 & 3 & 7 & 9
\end{array}
$$

$$
\begin{array}{lllll}
1 & 3 & 6 & 10 & 15
\end{array}
$$

1491625

4	The bearing of A from B is 310°						Do not write outside the box

Number of minutes late, t	Number of trains $=f$	Midpoint $=x$	$f x$
$0 \leqslant t<5$	12	2.5	30
$5 \leqslant t<10$	7	7.5	52.5
$10 \leqslant t<15$	1	12.5	12.5×7
$t \geqslant 15$	0		95
Total	20		

6 (a) Work out an estimate of the mean number of minutes late.

$$
\left.\begin{array}{rl}
\text { Mean } & =\frac{\text { total frequency }}{\text { total number of }} \\
\text { trains }
\end{array}\right]=\frac{95}{20}=4.75
$$

Answer
4.75
minutes

6 (b) The station manager looks at the information in more detail.

He works out an estimate of the mean using this information.
How does his estimate compare with the answer to part (a)?
Tick one box.

Higher than part (a)

Same as part (a)

Lower than part (a)

Not possible to tell

$$
\begin{aligned}
& 5(7 x+8)+3(2 x+b) \equiv a x+13 \\
& 35 x+40+6 x+3 b \equiv a x+13 \\
& \underline{41 x+(40+3 b)} \equiv \begin{array}{rl}
& \equiv a x+13 \\
a x=41 x & 40+3 b \\
a=41 & =13 \\
3 b & =-27 \\
b & =-9
\end{array}
\end{aligned}
$$

$$
a=41 \quad b=-9
$$

8 Two identical quarter circles are cut from a rectangle as shown.

Not drawn accurately 6 cm

Work out the shaded area.
Area of rectangle $=12 \times 6=72 \mathrm{an}^{2}$

$$
\frac{\pi r^{2}}{4}
$$

Area of Quarter Circle: $\frac{1}{4} \pi \times 6^{2}=9 \pi$
of 2

$$
\text { Shaded }=72-18 \pi=15.45 \ldots
$$

Answer

$$
\frac{15 \cdot 5}{(35 f)} \mathrm{cm}^{2}
$$

9 The diagrams show the position of a tap when off and fully on.
The tap is fully on when the angle of turn is 180°

When fully on, water flows out of the tap at 14 litres per minute.
The rate at which water flows out is in direct proportion to the angle of turn.
The tap is turned 135°

The water flows into a tank with a capacity of 79.8 litres.
Will it take less than $7 \frac{1}{2}$ minutes to fill the tank?
You must show your working.
[4 marks]

180

$78.75<79.8$
No, it will take more
\qquad

10
This triangle is equilateral. I All side lengths are equal

Not drawn accurately

Is the perimeter of the triangle greater than one metre?
You must show your working.

The perimeter is greater than 1 m

11 An approximation for the value of π is given by

$$
4\left(1-\frac{22}{57}+\frac{22}{85}-\frac{22}{105}+\frac{22}{117}-\frac{22}{242}\right)
$$

Use your calculator to show that this approximation is within 0.1 of 3.14

$$
\begin{aligned}
& =4(0.760 \cdots) \\
& =3.0418 \ldots
\end{aligned}
$$

$$
3.0418+0.1=3.1418
$$

\qquad
\qquad
$12 \quad$ Work out $\frac{9.12 \times 10^{10}}{3.2 \times 10^{4}}$
Give your answer in standard form.

$$
=\frac{9.12}{3.2} \times \frac{10^{10}}{10^{4}}
$$

Answer 2.85×10^{6}
\qquad

13 Ashraf is going to put boxes into a crate.
The crate is a cuboid measuring 2.5 m by 2 m by 1.2 m
Each box is a cube of length 50 cm
He does these calculations.

$$
\begin{aligned}
\text { volume of crate } & =2.5 \times 2 \times 1.21 \\
& =6 \mathrm{~m}^{3} 5 \\
\text { volume of one box } & =0.5 \times 0.5 \times 0.5 \\
& =0.125 \mathrm{~m}^{3} \\
\text { number of boxes } & =6 \div 0.125 \\
& =48
\end{aligned}
$$

He claims,
"I can put 48 boxes in the crate."
Evaluate Ashraf's method and claim.
\qquad
His method doesn't work as 1.2 m does not divide exactly into 50 cm .

This means his claw in is wrong, he can only fit 40 .

$$
5 \div 0.125=40
$$

14 The cross section of a prism has n sides.
Circle the expression for the number of edges of the prism.
$2 n$

$$
n+2
$$

$$
2 n+3
$$

15 The volume of a medal is $45 \mathrm{~cm}^{3}$
The medal is made from copper and tin.
volume of copper : volume of tin $=22: 3$
The density of copper is $8.96 \mathrm{~g} / \mathrm{cm}^{3}$
The density of tin is $7.31 \mathrm{~g} / \mathrm{cm}^{3}$
Work out the mass of the medal.

$$
\text { Density }=\frac{\text { mass }}{\text { Volume }}
$$

\qquad
\qquad

\qquad

Answer \qquad 394.29 grams

16 The cumulative frequency graph shows information about the masses of 50 apples.

16 (a) Use the graph to estimate the median mass of the apples.

$$
\frac{50}{2}=25
$$

Answer \qquad grams

16 (b) Estimate the proportion of the apples that have a mass greater than 115 grams. [2 marks]
42 apples have a mass 115 or lower.

$$
50-42=8
$$

Answer $\frac{8}{50}\left(\frac{4}{25}\right)$
$17 \quad a$ is a prime number.
b is an even number.
$N=a^{2}+a b$
Circle the correct statement about N.

always prime
always odd

18 A bag contains 20 discs.
10 are red, 7 are blue and 3 are green.

18 (a) Marnie takes a disc at random before putting it back in the bag.
Nick then takes a disc at random before putting it back in the bag.
Oily then takes a disc at random.
Work out the probability that they all take a red disc. \longrightarrow

en

$$
\begin{aligned}
& \text { Red: } \frac{10}{20}=1 / 2 \\
& 3 \text { people so } 1 / 2 \times 1 / 2 \times 1 / 2=1 / 8 \\
& \text { Answer } \quad 1 / 8
\end{aligned}
$$

18 (b) All 20 discs are in the bag.
Reggie takes three discs, at random, one after the other.
After he takes a disc he does not put it back in the bag.
Reggie's first disc is blue.
Work out the probability that all three discs are different colours.

$$
P(\text { Blue, Green, Red })^{[33 \text { marks }}
$$

$$
\begin{aligned}
& \text { Green: } 3 / 10^{-1}=3 / 19 \\
& \text { Red: } \frac{10}{19-1}=10 / 18
\end{aligned}
$$

$$
\frac{10 \times 3}{19 \times 18}=\frac{30}{342}
$$

$$
\frac{3 \times 10}{19 \times 18}=\frac{30}{342}
$$

Lunch

There are four starters and ten main courses to choose from.
Two of the starters and three of the main courses are suitable for vegans.
What percentage of the possible lunches have both courses suitable for vegans?
[3 marks]
Total Number of : $4 \times 10=40$ combinations

Answer 15 \%
$20 \quad n$ is a positive integer.
Prove algebraically that $\quad 2 n^{2}\left(\frac{3}{n}+n\right)+6 \pi\left(n^{2}-1\right) \quad$ is a cube number.

\qquad
$=8 n^{3}$
$=(2 n)^{3}=$ cube number
\qquad
\qquad
$21 y$ is inversely proportional to \sqrt{x}

$$
y=4 \text { when } x=9
$$

21 (a) Work out an equation connecting y and x.

$$
\begin{gathered}
y \alpha \frac{1}{\sqrt{x}} \quad y=\frac{k}{\sqrt{x}} \\
4=\frac{k}{\sqrt{9}} \\
4=\frac{k}{3}(\times 3) k=12 \\
\text { Answer } \frac{\text { [3 marks] }}{y=\frac{12}{\sqrt{x}}}
\end{gathered}
$$

21 (b) Work out the value of y when $x=25$

Answer $\quad y=2.4$

Turn over for the next question

22 Simplify fully $\frac{x^{5}-4 x^{3}}{3 x-6}$

$23 P Q R$ is a straight line.
$P Q: Q R=3: 1$
$\overrightarrow{P Q}=\mathbf{a}$

Circle the vector $\overrightarrow{R Q}$ - opposite
direction
[1 mark]
$\frac{1}{3} \mathbf{a}$
$\frac{1}{4} \mathbf{a}$
$-\frac{1}{3} \mathbf{a}$
$-\frac{1}{4} \mathbf{a}$

24 Here is a sketch of $\quad y=\mathrm{f}(x)$
The curve passes through the points

$$
(-2,-10) \quad(-1,-3) \quad(0,-2) \quad(1,-1) \quad(2,6)
$$

On the grid, sketch the curve $\quad y=\mathrm{f}(x+2)$
move to the left 2

PhysicsAndMathsTutor.com
$25 \quad A B C$ and $A C D$ are triangles.
Work out the size of angle x.

$$
\tan \theta=\frac{o p p}{a d j}
$$

Not drawn accurately

Find $A C$: $\quad \tan 49=\frac{A C}{16}$
$A C=16 \tan 49$
Sine Rule to $\frac{\sin x}{16 \tan 49}=\frac{\sin 35}{20}$

$$
\begin{aligned}
& \sin x=\frac{16 \tan 49 \times \sin 35}{20} \\
& x=\sin ^{-1}(0.527859 \cdots) \\
& x=31.86 \ldots
\end{aligned}
$$

$$
\text { Answer } \frac{31.9}{(35 f)} \text { degrees }
$$

$26 \quad \mathrm{f}(x)=\frac{x}{x+2} \quad \mathrm{~g}(x)=x^{2}-2$
Work out $\mathrm{fg}(x)$
Give your answer in the form $\quad a+b x^{n} \quad$ where a, b and n are integers.

$$
f g(x)=\frac{x^{2}-2}{x^{2}-2+2}=\frac{x^{2}-2}{x^{2}}
$$

\qquad
\qquad
\qquad

Answer

27 The point $\left(3, \frac{1}{64}\right)$ lies on the curve $y=k^{x}$ where k is a constant.

Show that the point $\left(\frac{1}{2}, \frac{1}{2}\right)$ lies on the curve.

$$
\begin{aligned}
& 1 / 64=k^{3} \\
& k=\sqrt[3]{\frac{1}{64}}=1 / 4
\end{aligned}
$$

$$
\text { when } \begin{aligned}
& x=1 / 2 \\
& y=1 / 4^{1 / 2}=1 / 2
\end{aligned}
$$

Therefore ($1 / 2,1 / 2$) les on the curve

28 lIzzy runs an 80-metre race in 14 seconds.
During the first 6 seconds her speed increases at a constant rate.
During the last 8 seconds her speed increases at a different constant rate.
Her speed at 14 seconds is $2 \mathrm{~m} / \mathrm{s}$ more than her speed at 6 seconds.
Here is a sketch of her speed-time graph.

$\underset{j}{\text { gradient }}$
28 (a) Work out her acceleration during the last 8 seconds.
State the units of your answer.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad=\frac{2}{8}=1 / 4
$$

Not drawn accurately

Answer $\quad 1 / 4 \mathrm{~m} / \mathrm{s}^{2}$

28 (b) When lIzzy finishes the 80-metre race, her speed is $v \mathrm{~m} / \mathrm{s}$
Work out the value of v.
Area under graph $=80 \mathrm{~m}$
(1) $\quad 1 / 2 \times(v-2) \times 6=3(v-2)=3 v-6$
(2) $\quad 1 / 2(v-2+v) \times 8=4(2 v-2)=8 v-8$

Answer
$=8.55 \mathrm{3sf}$

END OF QUESTIONS

Do not write outside the box

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
Copyright © 2018 AQA and its licensors. All rights reserved.

