AQA

Please write clearly in block capitals.

Centre number

Candidate number \square Surname \qquad
Forename(s)
Candidate signature

GCSE PHYSICS

Foundation Tier Paper 1

Wednesday 23 May 2018

Afternoon
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the box at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
TOTAL	

Figure 1 shows a cyclist riding along a flat road.
Figure 1

0	1	1

Choose answers from the box.
need vertical

kinetic

As the cyclist accelerates, the \qquad chemical \qquad energy store in the cyclist's body decreases and the \qquad
\qquad energy of the cyclist increases.
$\begin{array}{lll}\mathbf{0} & \mathbf{1} .2 & \mathbf{2} \text { The mass of the cyclist is } 80 \mathrm{~kg} \text {. The speed of the cyclist is } 12 \mathrm{~m} / \mathrm{s} \text {. }\end{array}$
Calculate the kinetic energy of the cyclist.
Use the equation:

$$
\text { kinetic energy }=0.5 \times \text { mass } \times(\text { speed })^{2}
$$

$K E=0.5 \times 80 \times 12^{2}=5760$
\qquad
\qquad
\qquad
Kinetic energy = \qquad 5760 J

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ When the cyclist uses the brakes, the bicycle slows down. |
| :--- | :--- | :--- | :--- |

This causes the temperature of the brake pads to increase by $50^{\circ} \mathrm{C}$.
The mass of the brake pads is 0.040 kg .
The specific heat capacity of the material of the brake pads is $480 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
Calculate the change in thermal energy of the brake pads.
Use the equation:
change in thermal energy $=$ mass \times specific heat capacity \times temperature change

\qquad
\qquad
Change in thermal energy = \qquad J
$\begin{array}{llll}\mathbf{0} & \mathbf{1} & \mathbf{4} \text { How is the internal energy of the particles in the brake pads affected by the increase }\end{array}$ in temperature?

Tick one box.

thermal energy

Decreased \square

Increased

Not affected

| 0 | 2 |
| :--- | :--- | Figure 2 shows how the current through a filament lamp changes after the lamp is switched on.

Figure 2
1 little square

16×0.005
$=$
0.08 s

For how many seconds is the current through the filament lamp greater than 1.5 A ?
Tick one box.
0.01 s \square
$\longrightarrow 0.08 \mathrm{~s}$

0.09 s \square
0.14 s \square

| $\mathbf{0}$ | $\mathbf{2} . \mathbf{2}$ Why might the filament inside a lamp melt when the lamp is first switched on? |
| :--- | :--- | :--- | The current goes above I.SA.

 Calculate the power of the lamp.

Use the equation:

$$
\text { power }=\text { potential difference } \times \text { current }
$$

$$
P=24 \times 1.5=36
$$

\qquad
\qquad
\qquad
Power $=$ \qquad W

What does this statement mean?
Tick one box.

LED lamps have a similar power output to filament lamps. \square
LED lamps waste a smaller proportion of the input energy than filament lamps.

LED lamps have a higher power input than filament lamps.

LED lamps waste a larger proportion of the input energy than filament lamps. \square

Efficiency $=\frac{\text { useful output power }}{\text { total input power }}$

0	3	1
Draw a diagram to show how 1.5 V cells should be connected together to give a		

Use the correct circuit symbol for a cell.

A student built the circuit shown in Figure 3.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Calculate the total resistance of the circuit in Figure 3.

Use the equation:

$$
\text { resistance }=\frac{\text { potential difference }}{\text { current }}
$$

$R=12 \div 1.6=7.5$
\qquad
\qquad
\qquad
Total resistance $=$ \qquad $7 \cdot 5$ Ω

$\mathbf{0}$	$\mathbf{3}$.
$\mathbf{3}$	The resistance of \mathbf{P} is 3.5Ω.

Calculate the resistance of \mathbf{Q}. 2 s .8
Total $R=7.5 \Omega \quad 7.5-3.5=4.0 \Omega$
\qquad
\qquad
\qquad
Resistance of $Q=4 \cdot 0$

What happens to the total resistance of the circuit? Tick one box.

It decreases

It increases \square

It does not change \square

Give a reason for your answer.

In parallel

$$
R_{T}<R_{\text {lowest resistor }}
$$

[1 mark]
Total resistance in parallel< resistance of the smallest resistor
\qquad
\qquad

| 0 | 4 |
| :--- | :--- | A student wanted to determine the density of a small piece of rock.

$\mathbf{0}$	$\mathbf{4} .1$	Describe how the student could measure the volume of the piece of rock.

Take a Eureka can and a measuring cylinder. Fill the Eureka can with water to the level of the spout. Gently place the rock in the water. The water level
rises and is collected in the measuring cylinder from the spout. The volume of the displaced water (measured with the
scale on the measuring cylinder) is equal to the volume of the rock.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ The volume of the piece of rock was $18.0 \mathrm{~cm}^{3} . \longleftarrow$

The student measured the mass of the piece of rock as 48.6 g .

Calculate the density of the rock in $\mathrm{g} / \mathrm{cm}^{3}$.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

$$
\text { Density }=48.6 \div 18.0=2.70
$$

\qquad $\mathrm{g} / \mathrm{cm}^{3}$

Figure 4 shows the densities of different types of rock.
Figure 4

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{3}$ What is the most likely type of rock that the student had?

Tick one box.

Basalt $\quad \square$
Flint \square
Granite \square

Limestone

Sandstone \square

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{4}$ Give one source of error that may have occurred when the student measured the |
| :--- | :--- | :--- | :--- | volume of the rock.

[1 mark]
Not all the displaced water is collected in the measuring cylinder.
OTHER ANSNERS:- Eye wan 4 asligned with seal when measuring.

| 0 | 4 |
| :--- | :--- | $\mathbf{5}$ How would the error you described in the above part affect the measured volume of the rock?

Volume wald be louece.
Your answer may change base on your previous answer.

PhysicsAndMathsTutor.com Same element (same atomic
$\begin{array}{l|l}0 & 5\end{array}$ Americium-241 ($\left.{ }_{95}^{241} \mathrm{Am}\right)$ is an isotope of americium.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Which of the isotopes given in Table $\mathbf{1}$ is not an isotope of americium?

no. of neutron' Table 1

Isotope \qquad B

Give a reason for your answer.
Americium has an atomic number of 95
OR B has an atomic number of ate
OR B does not have the same atomic number
as americium.

Question 5 continues on the next page

Figure 5 shows how the number of americium-241 nuclei in a sample changes with time.

Figure 5

$1.5 \times 20=30$

$$
400+30=430
$$

| $\mathbf{0}$ | $\mathbf{5} .2$ | $\mathbf{2}$ How many years does it take for the number of americium- 241 nuclei to decrease |
| :--- | :--- | :--- | :--- | from 10000 to 5000 ?

| 0 | 5 | 3 |
| :--- | :--- | :--- | What is the half-life of americium- 241 ?

Half-life $=$
430 years

$$
5000=\frac{1}{2} \times 10000
$$

0	6	Nuclear power can be used to generate electricity through nuclear fission.

Figure 6 shows the process of nuclear fission.
Figure 6

| 0 | 6.1 |
| :--- | :--- |\quad Complete the sentences. parent \quad nucleus

Choose answers from the box.
gamn丸árays light rays proton neytron nucleus X-rays

During the process of nuclear fission a uranium \qquad nucleus absorbs a \qquad .

Electromagnetic radiation is released in the form of

A nuclear power station has an electrical power output of 2400000 kW
Calculate how many nuclear power stations are needed to provide 25000000 kW of electrical power.

Number of nuclear power stations $=$ \square

| 0 | 6 | 3 |
| :--- | :--- | :--- | power stations.

2
2. Fuel is non-renevable.

OTHER ANSWERS: $\begin{aligned} \text {. waste has a long half-life e risk of catastrophic } \\ \text { - waste is toxic accidents. }\end{aligned}$

- waste must be buried

| 0 | 6 | 4 | The UK currently generates a lot of electricity by burning natural gas. This proces |
| :--- | :--- | :--- | :--- | releases carbon dioxide into the atmosphere.

Figure 7 shows how the concentration of carbon dioxide in the atmosphere ha changed over the past 115 years.

Figure 7

\qquad

Figure 8 shows how the global temperature has changed over the past 115 years.

Figure 8

Give one similarity and one difference between the data in Figure 7 and Figure 8.

Similarity both show a positive correlation.
\qquad
\qquad
Difference carbon dioxide concentration continues
to increase, whereas temperature increase levels off.

Turn over for the next question

$\mathbf{0}$	$\mathbf{7}$	The plug of an electrical appliance contains a fuse.

$\begin{array}{lll}0 & \mathbf{7} . & \mathbf{1} \text { What is the correct circuit symbol for a fuse? }\end{array}$
Tick one box.

$$
\uparrow
$$

LD

Diode,

Safety feature of a circuit designed to 'blow' circuit designed teak) above a given current.

$\begin{array}{lll}\mathbf{0} & \mathbf{7} . & \mathbf{2} \text { The appliance is connected to the mains electrical supply. The mains potential }\end{array}$ difference is 230 V .

Calculate the energy transferred when 13 C of charge flows through the appliance.
Use the equation:

$$
\text { energy transferred }=\text { charge flow } \times \text { potential difference }
$$

$$
E=13 \times 230=2990
$$

\qquad
\qquad
\qquad
Energy transferred =
\qquad 2990 J

Figure 9 shows the structure of a fuse.
Figure 9
Glass case

Fuse wire

| 0 | $\mathbf{7}$ | $\mathbf{3}$ Write down the equation that links charge flow, current and time. |
| :--- | :--- | :--- | :--- |

charge flow = current x time

$$
Q=I t
$$

| 0 | $\mathbf{7}$. | $\mathbf{4}$ The fuse wire melts when 1.52 coulombs of charge flows through the fuse in |
| :--- | :--- | :--- | 0.40 seconds.

Calculate the current at which the fuse wire melts.

$$
\therefore \begin{aligned}
\left.\quad \begin{array}{l}
\frac{\text { charge flow }}{\text { charge flow }} \\
\text { time }
\end{array}=\text { current } x \text { time }\right) \div \text { time } \\
\qquad \frac{1.52}{0.40}=3.8
\end{aligned}
$$

Current $=$ \qquad $3 \cdot 8$ A solid to liquid or \measuredangle liquid to solid
 wire is $205000 \mathrm{~J} / \mathrm{kg} . \longleftarrow \begin{aligned} & T \\ & 3 \mathrm{sf}\end{aligned}$ Calculate the energy needed to melt the fuse wire. Use the Physics Equations Sheet.

$$
\begin{aligned}
& \text { Lenergy required to change } \\
& \text { the state of thy of the } \\
& \text { material without changing the } \\
& \text { [2 narks] temperature }
\end{aligned}
$$

thermal energy for a change of state $=$ mass \times specific

$$
E=m L=0.00175 \times 205000=358.75
$$

\qquad

0	8

Figure 10

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Copper has a higher thermal conductivity than most metals. l . l

How does the rate of energy transfer through copper compare with the rate of energy transfer through most metals?

Tick one box.

Higher

Lower

The same

| $\mathbf{0}$ | $\mathbf{8} .2$ |
| :--- | :--- | :--- | The tank is insulated. When the water is hot, the immersion heater switches off. Complete the sentences.

Compared to a tank with no insulation, the rate of energy transfer from the water in an insulated tank is \qquad -

This means that the water in the insulated tank stays \qquad for longer.

Figure 11 shows how temperature varies with time for water in a tank heated with an immersion heater.

Figure 12 shows how temperature varies with time for water in a tank heated with a solar panel.

Figure 11

Figure 12

0	8.3
3	

Use only information from Figure 11 and Figure 12.

Advantage of solar panels

Disadvantage of solar panels Temperature of the water is lower.

OR water may not be hot enough.
$O R$ it takes more time to heat the water.

0	8	4
During one morning, a total of 4070000 J of energy is transferred from the electric		

4030000 J of energy are transferred to the water.
Calculate the proportion of the total energy transferred to the water.
$\frac{4030000}{4070000}=0.99017 \ldots$
\qquad
\qquad
Proportion of total energy $=$ \qquad
99%

$$
\text { power }=\text { energy transferred } \div \text { time } \quad P=\frac{E}{t}
$$

0	8	6

Calculate the time taken for the immersion heater to transfer 4070000 J of energy.
Give the unit.

13.57 minutes

0	9

Figure 13

Calculate the power output of the motor in the lift.
Use the equation:

$$
\text { Power output }=\frac{\text { work done }}{\text { time }}
$$

[2 marks]
$p=\frac{120000}{8.0}=15000$
\qquad
\qquad
\qquad
Power output = \qquad 15000

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ The power input to the motor is greater than the power output.

Tick two reasons why.
[2 marks]

Energy is transferred in heating the surroundings.

Friction causes energy to be transferred in non-useful ways.

The motor is connected to the mains electricity supply. X
udoesn't change power inputs power ont put

The motor is more than 100% efficient. X us it' 6 less than 100% efficient as power
There are only four people in the lift. X input $>\underset{\substack{\text { power } \\ \text { output }}}{\text { in }}$
4no. of people doesn't matter

0	9	3	Figure 14 shows part of the circuit that operates the lift motor.

The lift can be operated using either of the two switches.
complete.

Explain why.
The switches are in parallel, so
closing either switch completes the circuit

| $\mathbf{0}$ | $\mathbf{9} .4$ | Write down the equation that links gravitational field strength, gravitational potential |
| :--- | :--- | :--- | :--- | energy, height and mass.

[1 mark]

 gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the increase in gravitational potential energy of the people in the lift.
Give your answer to 2 significant figures.

Increase in gravitational potential energy = \qquad 38000 J

Turn over for the next question

Figure 1 shows a student walking on a carpet.

Figure 1

| $\mathbf{1}$ | $\mathbf{0} .1$ The student becomes negatively charged because of the friction between his socks |
| :--- | :--- | and the carpet.

Explain why the friction causes the student to become charged.
There is
is a transfer of electrons \int from the carpet to the boy
\qquad
\qquad

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$ The student's head is represented by the sphere in Figure $\mathbf{2}$.

The student is negatively charged. The arrow shows part of the electric field around the student's head.

Draw three more arrows on Figure 2 to complete the electric field pattern.

Figure 2

The negatively charged student touches a metal tap and receives an electric shock.
Explain why.

[3 marks]
There is a potential difference between the student and the tap
This causes a How of electors form the student to the tap
This means that the charge has been earthed/

| 1 | $\mathbf{0} .4$ | $\mathbf{4}$ Some carpets have thin copper wires running through them. The student is less likely |
| :--- | :--- | :--- | to receive an electric shock after walking on this type of carpet.

Suggest why.
\qquad through the wire instead of the student. Smaller pd between student and carpets so the student is less likely to receive an electric shock.
\qquad
\qquad

1	1	A teacher used a Geiger-Muller tube and counter to measure the number of counts in

| 1 | 1 |
| :--- | :--- | .1 The counter recorded 819 counts in 60 seconds. The background radiation count rate was 0.30 counts per second.

Calculate the count rate for the rock.
\qquad

$$
\frac{819}{60} J=\frac{13.65 / \text { combats } /_{\text {second }}}{13.65-0.3=13.35}
$$

\qquad

$$
\text { Count rate }=\quad 13.35 \mathrm{per} \mathrm{~second}
$$

1	1.2

A householder is worried about the radiation emitted by the granite worktop in his kitchen.

1 kg of granite has an activity of 1250 Bq . The kitchen worktop has a mass of 180 kg . Calculate the activity of the kitchen worktop in Aq.

$$
\times 100 \int_{180 \mathrm{~kg}}^{\mathrm{lkg} \rightarrow\binom{1250 \mathrm{~Bq}}{1250 \times 180}=225000}
$$

\qquad
\qquad
\qquad Bq

$\mathbf{1}$	$\mathbf{1}$.	$\mathbf{3}$

Table 1

Radiation dose in millisieverts	Effects
10000	Immediate illness; death within a few weeks
1000	Radiation sickness; unlikely to cause death
100	Lowest dose with evidence of causing cancer

The average radiation dose from the granite worktop is 0.003 millisieverts per day.
Explain why the householder should not be concerned about his yearly radiation dose from the granite worktop.

One year is 365 days.

$$
0.003 \times 365=1.095 \mathrm{mSv}
$$

This value calculated is significantly us than 100 mJv which is the lower dose required to cause harm, so the houscholder loos not nest to be concerned.

1	1	4
4	Bananas are a source of background radiation. Some people think that the unit of	

Suggest one reason why the Banana Equivalent Dose may help the public be more aware of radiation risks.
\qquad be compared $/$ to an everyday object.

| $\mathbf{1}$ | $\mathbf{2} \quad$ A student investigated how the resistance of a piece of nichrome wire varies |
| :--- | :--- | with length.

Figure 3 shows part of the circuit that the student used.
Figure 3

[3 marks]

1	2	2

Your answer should include a risk assessment for one hazard in the investigation.
resistance \quad [6 marks]

Use a ruler to measure the length of the wire, then use an ammeter to measure the current through the wire and a voltmeter to measure the potential difference across
for $6 / 6$ He wire. Use $R=\frac{v}{1}$ to calculate the resistance for this lengths. V
vary the ungth of the wire and repeat. Tale multiple voltage and current readings for the length of wing. - plot resistance The wire card heat op if high currents are used against length this could lead to burns, to avoid this we should uSe low currents./

| 1 | 2 | 3 |
| :--- | :--- | :--- | Why would switching off the circuit between readings have improved the accuracy of the student's investigation?

Tick one box. Control variable - temp of wire

The charge flow through the wire would not change.

The potential difference of the battery would not increase. \square

The power output of the battery would not increase.

The temperature of the wire would not change.
\square

The potential different of the bate ry wo ul no

1	2	4
4	The student used crocodile clips to make connections to the wire.	

They could have used a piece of equipment called a 'jockey'.
Figure 4 shows a crocodile clip and a jockey in contact with a wire.
Figure 4

How would using the jockey have affected the accuracy and resolution of the
student's results compared to using the crocodile flip?

Tick two boxes.
how close to
the true value

ungly that cord s measured [2 marks]

The accuracy of the student's results would be lower.

The accuracy of the student's results would be the same.

The resolution of the length measurement would be higher.
\square
The accuracy of the student's results would be higher.
\square

The resolution of the length measurement would be lower.

The resolution of the length measurement would be the same. \square

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

