P
 Pearson
 Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Further Mathematics
AS Further Statistics S1 Paper 8FMO_23

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 8FM0_23_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 40 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response.
If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs
1(a)	1.36 or 1.37	B1	1.1b
		(1)	
(b)	H_{0} : $\mathrm{Po}(1.75)$ is a suitable model $\mathrm{H}_{1}: \mathrm{Po}(1.75)$ is not a suitable model	B1	3.4
		(1)	
(c)	Cells are combined for expected frequencies < $\mathbf{5}$ so combine the last 3 cells	B1	2.4
	subtract 1 since totals agree	B1	2.4
		(2)	
(d)	$\chi_{4}^{2}=9.488$	B1	1.1b
	therefore, the researcher's belief is supported or evidence that $\mathbf{P o}(1.75)$ is a good model for the number of orchids in each square metre	B1ft	3.5a
		(2)	
(e)	$\mathrm{P}($ exactly 6 orchids $)=$ awrt 0.00353	B1	1.1b
	$X \sim \mathrm{~B}(200, ~ " 0.00353 ")$ mean $=200 \times$ " 0.00353 " $=$ awrt 0.706	M1	3.3
	$Y \sim \operatorname{Po}\left(\right.$ " 0.706 ") $1-\mathrm{P}(Y=0)=1-e^{-" 0.706 " ~}$	M1	3.4
	$=0.506^{*}$	A1*	2.1
		(4)	
(10 marks)			
Notes			
(a) B1: accept 1.36 or 1.37			
(b) B1: For both hypotheses correct. Must have $\operatorname{Po}(1.75)$ or Poisson with mean 1.75 and be attached to H_{0} and H_{1} the right way round.			
(c) B1: Explaining why there are 5 classes. Must mention combine the $\mathbf{3}$ cells when frequencies $<\mathbf{5}$ or to combine the 3 cells to make frequency > 5 B1: Explaining why 1 is subtracted. Must say/show $\mathbf{1}$ is subtracted and Totals agree or Total frequency must be 150 or only need 4 pieces of data to find the other or λ is known or 1.75 is given. NB B0 for "only 1 constraint" on its own.			
(d) B1: awrt 9.49 B1ft: ft their critical value only. For drawing the correct conclusion - condone missing 1.75. If hypotheses are the wrong way round or there are no hypotheses in (b) award B0			
(e) B1: awrt 0.00353 . May be implied by awrt 0.706 for mean. M1: Selecting the model $\mathrm{B}(200$, "their $\mathrm{P}($ exactly 6 orchids)") and using $n p(0<p<1)$ to find the mean. May be implied by awrt 0.706 M1: Using the model Po(their $n p$) and using or writing $1-\mathrm{P}(Y=0)$ or $1-\mathrm{P}(Y \leq 0)$ or $1-e^{-" 0.706 "}$ A1*: only award if the previous 3 marks have been awarded. and $\mathbf{0 . 5 0 6}$ stated.			

Question	Scheme		Marks	AOs
2(a)	$\mathrm{P}(H \geq 2)=0.1558 \quad$ awrt $\underline{\mathbf{0 . 1 5 6}}$		B1	1.1b
			(1)	
(b)	$H \sim \operatorname{Po}(0.7) \quad G \sim \operatorname{Po}(3)$			
	$Y=H+G \rightarrow Y \sim \operatorname{Po}(3.7)$		M1	3.4
	$\mathrm{P}(Y \leq 3)=0.494 *$		A1cso*	1.1b
			(2)	
(c)	$K \sim B(6,0.494)$		M1	3.3
	$\mathrm{P}(K \geq 5)=1-\mathrm{P}(K \leq 4)$		M1	1.1b
	$=1-0.896 \ldots$			
	= 0.1039...	awrt $\underline{0.104}$	A1	1.1b
			(3)	
(d)	$\mathrm{H}_{0}: \lambda=$ " $3.77 \quad \mathrm{H}_{1}: \lambda>$		B1ft	2.5
	$J \sim \operatorname{Po}(7.4)$		B1ft	1.1b
	Method 1	Method 2		
	$\begin{aligned} \mathrm{P}(J \geq 14) & =1-\mathrm{P}(J \leq 13) \\ = & 1-0.9804 \ldots \end{aligned}$	$\begin{aligned} & \mathrm{P}(J \geq 12)=0.0735 \ldots \\ & \mathrm{P}(J \geq 13)=0.0391 \ldots \end{aligned}$	M1	1.1b
	= 0.0195...	CR $J \geq 13$	A1	1.1b
	$0.0195<0.05$ or $14 \geq 13$ or 14 is in the critical region or 14 is significant or Reject H_{0}. There is evidence at the 5% level of significance that the number of heaters brought in total from the two supermarkets has increased.		A1	2.2b
			(5)	
(11 marks)				
Notes				
(a)B1: awrt 0.156				
(b)M1: For combining distributions and use of $\operatorname{Po}(3.7)$ A1*cso: $\mathrm{P}(Y \leq 3)=0.494$ we need to see $\mathrm{P}(Y \leq 3)$ or $\mathrm{P}(Y<4)$ allow different letters.				
(c) M1: Setting up a new model $\mathrm{B}(6,0.494)$ may be implied by a correct answer or ${ }^{6} C_{n}(0.494)^{n}(0.506)^{6-n}$M1: Using $1-\mathrm{P}(K \leq 4)$A1: awrt 0.104				
(d)B1: Both hypotheses correct using λ or μ.ft" 3.7 " from their 3.7 in part (b) and allow $2 \times$ "their 3.7 "Ignore any words B1: Realising that $\operatorname{Po}(2 \times$ "their 3.7 " $)$ is to be used. This may be stated or used. M1: writing or using $1-\mathrm{P}(J \leq 13)$ or $1-\mathrm{P}(J<14)$ or if finding a CR for writing $\mathrm{P}(J \geq 12)=0.0735 \ldots$ and $\mathrm{P}(J \geq 13)=0.0391 \ldots$ A1: awrt 0.0195 or CR $J \geq 13$ or $J>12$ A1: A fully correct solution and drawing a correct inference in context.				

Notes

(a) B1: $\frac{5}{2}$ or 2.5
(b) dM1: Dependent on $3^{\text {rd }}$ and $4^{\text {th }}$ Method marks being awarded.

For a complete strategy to find a value of a and a value of b.
Need 2 independent equations in a and b, one equation must be prob $=1 / 6$ and the other $3 a+2 b=0.7$ oe and an attempt to solve. For an attempt we require a method to eliminate one variable leading to a value for a and b, or correct values.
M1: For using the given contextual information to list 3 different combinations for Greg to win. Implied by $4 a+3 b=1$ oe
M1: For using $\mathrm{P}(g) \times \mathrm{P}(n)$ for each combination identified as a win for Greg $=\frac{1}{6}$
It must be a linear equation in a and b with $2 / 3$ terms on the LHS, at least one of which must be correct and equal to $1 / 6$
M1: For use of $\sum \mathrm{P}(W=w)=1$
A1: For both values correct
(c) M1: For translating the given mathematical context into an expression for $\mathrm{E}(W)$

May be implied by a correct equation or $\mathrm{E}(W)=3.8$
M1: For use of $\sum w \mathrm{P}(W=w)[=3.8]$ If algebraic then at least 2 terms must be correct, if numerical at least 3 terms correct ft their values of a and b. This must be seen in part (c)
[NB: $16 a+2 b+2 c b+2.4-5=2.6$ oe would get M1M1]
A1: сао
M1: For use of $\sum w^{2} \mathrm{P}(W=w)$. If algebraic then at least 2 terms must be correct, if numerical at least 3 terms correct ft their values of a and b.

M1: For use of $\operatorname{Var}(W)=\mathrm{E}\left(\mathrm{W}^{2}\right)-[\mathrm{E}(W)]^{2}$
A1ft: $4 \times$ "their $\operatorname{Var}(W)$ " ft their $\operatorname{Var}(W)$ provided a, b and $\operatorname{Var}(W)$ are >0 and $\mathrm{c}>5$
Alternative for (c). allow a mix of methods

(c)	$[\mathrm{E}(X)=]-3 \times(a+b)-1 \times a+0.9+5 \times a+(2 c-5) \times b$	M1
	$-3 \times(a+b)-1 \times a+0.9+5 \times a+(2 c-5) \times b=2.6$	M1
	$c=8$	A1
	Values of X-3, -1, 3, 5, 2c-5	M1
	$\begin{aligned} \mathrm{E}\left(X^{2}\right) & =9 \times(a+b)+1 \times a+2.7+25 \times a+(2 c-5)^{2} \times b \\ & =32.2 \end{aligned}$	M1
	$\begin{aligned} \operatorname{Var}(X) & =" 32.2^{"}-2.6^{2} \\ & =25.44 \end{aligned}$	A1ft
Notes for alternative		
	M1: allow with their a, b and X values	
	M1: allow with their a, b and X values	
	A1: cao	
	M1: at least 3 correct	
	M1: allow with their c, a, b and X values	
	A1ft: ft their $\mathrm{E}\left(X^{2}\right)$ provided a and b are >0 and $\mathrm{c}>5$	

Question	Scheme				Marks	AOs
4	H_{0} : There is no association between the treatment of the plants and their survival/outcome. H_{1} : There is an association between the treatment of the plants and their survival/outcome				B1	3.4
		$\begin{gathered} \text { No } \\ \text { action } \end{gathered}$	Plant sprayed once	Plant sprayed every day	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Plant died within a month	13.44	24.64	17.92		
	Plant survived for 1-6 months	10.32	18.92	13.76		
	Plant survived beyond 6 months	6.24	11.44	8.32		
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(15-" 13.44 ")^{2}}{" 13.44 "}+\frac{(16-" 24.64 ")^{2}}{" 24.64 "}+8.29$				M1	1.1b
	awrt 11.5				A1	1.1b
	Degrees of freedom (3-1) (3-1) = 4$\chi_{4,0.025}^{2}=11.143$				M1	3.1b
	Reject H_{0} There is an association between the treatment of the plants and their survival/outcome				dA1ft	2.2b
(7 marks)						

Notes

B1: For correct hypotheses at least one in context. Allow independent and not independent. Do not accept correlation.
M1: For attempt at $\frac{(\text { Row Total }) \text { (Column Total) }}{(\text { Grand Total })}$ to find expected frequencies. (they may put numbers in table)
A1: awrt 13.44 and 24.64 This may be implied by a correct value of χ^{2}
M1: For applying $\sum \frac{(O-E)^{2}}{E} \mathrm{ft}$ their expected values. If no method shown at least 1 of the two missing χ^{2} contributions must be correct - you may need to check this (correct ones are $0.181 \ldots$ and 3.0296... allow 2sf) (condone missing 8.29)
A1: awrt 11.5
M1: For using degrees of freedom to set up χ^{2} model critical value, implied by CV 11.143 or better dA1ft: dependent on the $2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{M}$ marks. Correct conclusion ft their $\sum \frac{(O-E)^{2}}{E}$ there is an association between the treatment of the plants and their survival/outcome: - do not allow contradicting statements. Do not award if hypotheses are the wrong way round or there are no hypotheses.

