A-level FURTHER MATHEMATICS 7367/3S

Paper 3 Statistics
Mark scheme
June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods.
Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method
R	mark is for reasoning
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

ASIA-level Maths/Further Maths assessment objectives

AO		
AO1	AO1.1a	Select routine procedures
	AO1.1b	Correctly carry out routine procedures
	AO1.2	Accurately recall facts, terminology and definitions
	AO2.1	Construct rigorous mathematical arguments (including proofs)
	AO2.2a	Make deductions
	AO2.2b	Make inferences
AO2.3	Assess the validity of mathematical arguments	
	AO2.4	Explain their reasoning
	AO2.5	Use mathematical language and notation correctly
	AO3.1b	Translate problems in mathematical contexts into mathematical processes
	AO3.2a	Interpret solutions to problems in their original context
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems
	AO3.3	Translate situations in context into mathematical models
	AO3.4	Use mathematical models
	AO3.5a	Evaluate the outcomes of modelling in context
	AO3.5b	Recognise the limitations of models
	AO3.5c	Where appropriate, explain how to refine models

Q	Marking Instructions	AO	Marks	Typical Solution
$\mathbf{1}$	Circles correct answer	AO1.1b	B1	80
		Total		$\mathbf{1}$

\mathbf{Q}	Marking Instructions	AO	Marks	Typical Solution
$\mathbf{2}$	Circles correct answer	AO1.1b	B1	18.9%
		Total		$\mathbf{1}$

Q	Marking Instructions	AO	Marks	Typical Solution
3(a)	Uses formula for confidence interval with AWRT 1.96 or 1.64 or 1.645 (PI)	A01.1a	M1	$\begin{aligned} & \bar{x} \pm z \sqrt{\frac{\sigma^{2}}{n}} \\ & =36 \pm 1.96 \frac{6}{\sqrt{5}} \\ & =(30.7,41.3) \end{aligned}$
	Obtains correct confidence interval AWRT (30.7, 41.3) Condone poor notation	A01.1b	A1	
3(b)	Infers no as 30 minutes is outside the confidence interval. Follow through their confidence interval	AO2.2b	E1F	The confidence interval does not support Alan's claim as 30 minutes is outside the confidence interval.
3(c)	Explains that their z value would be replaced by a t value or gives correct formula Condone use a t-test rather than a z-test Ignore any values given following a correct statement Implied by AWRT 1.96 replaced by AWRT 2.78	AO3.5c	E1	A t distribution will be used instead of a normal distribution
	Total		4	

Q	Marking Instructions	AO	Marks	Typical Solution
4(a)	Forms one correct equation using $\mathrm{E}(X)=3$ by using the formulae for a rectangular distribution or by first principles	AO3.1a	M1	$\frac{1}{2}(a+b)=3$ Forms one correct equation using Var(X = $=3$ by using the formulae for a rectangular distribution or by first principles
	AO1.1a	M1	$\frac{1}{12}(b-a)^{2}=3$	

Q	Marking Instructions	AO	Marks	Typical Solution
5(a)	Forms an integral with correct upper limit using $P(X \leq 200)$ and set equal to 0.5 (may be implied by later work) Condone missing dx	A01.1a	M1	$\begin{aligned} & \int_{1}^{200} \frac{k}{x} d x=0.5 \\ & {[k \ln x]_{1}^{200}=0.5} \\ & \mathrm{k} \ln 200=0.5 \\ & \mathrm{k}=\frac{0.5}{\ln 200}=\frac{1}{2 \ln 200} \end{aligned}$
	Integrates correctly Condone missing limits	A01.1b	M1	
	Shows substitution of limits and solves to show that $\mathrm{k}=\frac{1}{2 \ln 200}$ Mark awarded if they have a completely correct solution, which is clear, easy to follow, uses correct notation and contains no slips	AO2.1	R1	
5(b)	States the correct integral to find $\mathrm{P}(X<2000)$ (PI) Condone missing dx	A01.1a	M1	$\frac{1}{2 \ln 200} \int_{1}^{2000} \frac{1}{x} d x=0.717$
	Finds correct probability (AWRT 0.717)	A01.1b	A1	
5(c)	Explains that the model is restricted to values from 1 to 2000 Implied by set $a=2000$	AO3.5c	E1	Set $\mathrm{a}=2000$ and change the value of k so that $P(X<2000)=1$
	Either suggests model with pdf unchanged for $(1,2000)$ and has probability 1 - their (b) for 2000 or Suggests same pdf with a different or increased value of k or a different pdf so that $P(X<2000)=1$ Implied by $\mathrm{k}=1 / \mathrm{ln} 2000$ or AWRT 0.132	AO3.5c	E1	
	Total		7	

Q	Marking Instructions	AO	Marks	Typical Solution
8(a)(i)	Obtains correct probability AWRT 0.224	A01.1b	B1	$\mathrm{P}(X=2)=0.224$
8(a)(ii)	$\begin{array}{\|l\|} \hline \text { Selects Poisson model with } \\ \lambda=3 \times 6=18(\mathrm{PI}) \\ \text { Implied by } 0.0059 \text { for } \mathrm{P}(\mathrm{Y} \geq 30) \end{array}$	AO3.3	B1	$\begin{aligned} & Y \sim P o(18) \\ & P(Y>30)=P(Y \geq 31) \\ & =0.0033 \end{aligned}$
	Identifies correct probability $P(Y \geq 31)$ or $1-P(Y \leq 30)$	A01.1a	M1	
	Obtains correct probability AWRT 0.0033	A01.1b	A1	
8(b)	Selects binomial model with $n=6$ and p their probability from 8(a)(i) (PI)	AO3.3	B1	$\begin{aligned} & C \sim B(6,0.224) \\ & P(C=2)=\binom{6}{2} 0.224^{2}(1-0.224)^{4} \\ & =0.273 \end{aligned}$
	Calculates $0.224^{2}(1-0.224)^{4}$ with their 0.224	A01.1a	M1	
	Obtains correct probability AWRT 0.273	A01.1b	A1	
8(c)(i)	Selects exponential or Poisson model with $\lambda=3$ calls per 10 minutes or equivalent (PI)	AO3.3	B1	$\begin{aligned} & T \sim \operatorname{Exp}(3) \\ & \mathrm{P}(T>1)=\mathrm{e}^{-3 \times 1} \\ & =0.0498 \end{aligned}$
	Calculates correct probability, consistent with their exponential or Poisson model Condone confusion between mean and parameter of exponential	A01.1a	M1	
	Obtains correct probability AWRT 0.0498	A01.1b	A1	
8(c)(ii)	States correct probability Follow through their answer to part 8(c)(i)	AO1.2	B1F	0.0498 Due to the memoryless property of the exponential distribution probability is unaffected by the current time since the last call
	Deduces that it is the same because of the memoryless property of the exponential distribution	AO2.2a	E1	
	Total		12	

