

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics AS Further Core Pure Paper 8FM0_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 8FM0_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs
1. (a)	$(\det(\mathbf{M}) =) (4)(-7) - (2)(-5)$	M1	1.1a
ļ	M is non-singular because $det(\mathbf{M}) = -18$ and so $det(\mathbf{M}) \neq 0$	A1	2.4
		(2)	
(b)	Area $R = \frac{\text{Area } S}{(\pm) \det \mathbf{M} } = \dots$	M1	1.2
	Area(R) = $\frac{63}{ -18 } = \frac{7}{2}$ oe	A1ft	1.1b
		(2)	
(c)	$ \begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \begin{pmatrix} 4x - 10x \\ 2x - 14x \end{pmatrix} $	M1	1.1b
	$= \begin{pmatrix} -6x \\ -12x \end{pmatrix} \text{ and so all points on } y = 2x \text{ map to points on } y = 2x,$ hence the line is invariant. $OR = -6 \begin{pmatrix} x \\ 2x \end{pmatrix} \text{ hence } y = 2x \text{ is invariant.}$	A1	2.1
		(2)	
		. ,	marks)
	Notes	·	
(a)	 M1 An attempt to find det(M). Just the calculation is sufficient. Site of -18 implies this mark, which may be embedded in an attempt at the inverse A1 det(M) = -18 and reference to zero, e.g18 ≠ 0 and conclusion. The conclusion may precede finding the determinant (e.g. "Non-singular if det(M) ≠ 0, det(M) = -18 ≠ 0" is sufficient or accept "Non-singular if det(M)≠ 0, det(M) = -18, therefore non-singular" or some other indication of conclusion.) 		
(b)	Need not mention "det(M)" to gain both marks here, a correct calculation, statement $-18\neq 0$, and conclusion hence M is non-singular can gain M1A1. Recalls determinant is needed for area scale factor by dividing 63 by ±their determinant. A1ft $\frac{7}{2}$ or follow through $\frac{63}{ \text{their det} }$. Must be positive and should be simplified to		
(c)	single fraction or exact decimal. (Allow if made positive following division by a negative determinant.) M1 Attempts the matrix multiplication shown or with equivalent, e.g $\left(\frac{1}{2}y\right)$. May		
	use $\begin{pmatrix} x \\ y \end{pmatrix}$ and substitute $y = 2x$ later and this is fine for the me A1 Correct multiplication and working leading to conclusion tha If the -6 is not extracted, they must make reference to image $y = 2x$. If the -6 is extracted to show it is a multiple of $\begin{pmatrix} x \\ 2x \end{pmatrix}$ conclusion "invariant" as minimum.	thod. t the line is in points being	variant.

	Notes Continued		
Alt for (c)	$ \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{-18} \begin{pmatrix} -7 & 5 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \frac{-1}{18} \begin{pmatrix} -7x + 10x \\ -2x + 8x \end{pmatrix} $	M1	1.1b
	$= \frac{-1}{18} \binom{3x}{6x} \left(= \frac{-1}{6} \binom{x}{2x} \right) \Rightarrow b = 2a \text{ so points on line } y = 2x \text{ map to}$	A1	2.1
	points on y= 2x, hence it is invariant.		
Alt 2	Marks as per main scheme, (Since linear transformations map straight lines to straight lines)	M1	1.1b
7110 2	E.g. $(1,2)$ is on line $y = 2x$, and $\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4-10 \\ 2-14 \end{pmatrix}$	1,411	1.10
	$= \begin{pmatrix} -6 \\ -12 \end{pmatrix}$, which is also on the line $y=2x$, hence as (0,0) and (1,2) both map to points on $y=2x$ (and transformation is linear) then $y=2x$ is	A1	2.1
	invariant.		
	Notes		
	M1 Identifies a point on the line $y = 2x$ and finds its image under T . I must be a clear statement it is because this is on the line, but fo accept with any line on $y = 2x$ without statement.		
	A1 Shows the image and another point, which may be $(0,0)$, on $y=2x$ points on $y=2x$ concludes line is invariant. Need not reference being linear for either mark here.	-	
Alt 3	$\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} \Rightarrow \begin{cases} 4x - 5(mx+c) = X \\ 2x - 7(mx+c) = mX+c \end{cases}$	M1	2.1
	$\Rightarrow 2x - 7(mx + c) = m(4x - 5(mx + c)) + c$		
	$\Rightarrow (5m^2 - 11m + 2)x + (5m - 8)c = 0$		
	$\Rightarrow (5m-1)(m-2) = 0 \Rightarrow m = \dots$		
	Or similar work with $c = 0$ throughout.		
	$\left(5m - 8 \neq 0 \Longrightarrow c = 0\right)$	A1	1.1b
	Hence $m = 2$ gives an invariant line (with $c = 0$), so $y = 2x$ is invariant.		
	Notes		
	M1 Attempts to find the equation of a general invariant line, or general through the origin (so may have $c = 0$ throughout). To gain the must progress from finding the simultaneous equations to form and solving to a value of m .	method m iing a quad	ark they ratic in <i>m</i>
	A1 Correct quadratic in m found, with $m = 2$ as solution (ignore the deduction that hence $y = 2x$ is an invariant line. Ignore errors in as $c = 0$ is always a possible solution. No need to see $c = 0$ derivatives of the deduction of the d	the $(5m -$	

Marks

AOs

2.	$\{w=x$	$+3 \Rightarrow x = w - 3$	B1	3.1a	
	2(w-3)	$(w-3)^{2} + 6(w-3)^{2} - 3(w-3) + 12 = 0$	M1	1.1b	
	$2w^{3}-1$	$8w^2 + 54w - 54 + 6(w^2 - 6w + 9) - 3w + 9 + 12(=0)$			
		$2w^3 - 12w^2 + 15w + 21 = 0$	M1	3.1a	
		-	A1	1.1b	
		(So $p = 2$, $q = -12$, $r = 15$ and $s = 21$)	A1	1.1b	
			(5)		
ALT 1		$+ \gamma = -\frac{6}{2} = -3$, $\alpha\beta + \beta\gamma + \alpha\gamma = -\frac{3}{2}$, $\alpha\beta\gamma = -\frac{12}{2} = -6$	B1	3.1a	
	sumroc	$ots = \alpha + 3 + \beta + 3 + \gamma + 3$			
		$= \alpha + \beta + \gamma + 9 = -3 + 9 = 6$			
	pair sur	$n = (\alpha + 3)(\beta + 3) + (\alpha + 3)(\gamma + 3) + (\beta + 3)(\gamma + 3)$			
		$= \alpha\beta + \alpha\gamma + \beta\gamma + 6(\alpha + \beta + \gamma) + 27$			
		$=-\frac{3}{2}+6\times-3+27=\frac{15}{2}$	M1	3.1a	
		$=-\frac{1}{2}+6\times-3+27-\frac{1}{2}$	1411	J.1a	
		$t = (\alpha + 3)(\beta + 3)(\gamma + 3)$			
		$= \alpha\beta\gamma + 3(\alpha\beta + \alpha\gamma + \beta\gamma) + 9(\alpha + \beta + \gamma) + 27$			
		$= -6 + 3 \times -\frac{3}{2} + 9 \times -3 + 27 = -\frac{21}{2}$			
		$w^3 - 6w^2 + \frac{15}{2}w - \left(-\frac{21}{2}\right) (=0)$	M1	1.1b	
		$2w^3 - 12w^2 + 15w + 21 = 0$	A1	1.1b	
		(So $p = 2$, $q = -12$, $r = 15$ and $s = 21$)	A1	1.1b	
			(5)		
			(5	marks)	
		Notes			
	B 1	Selects the method of making a connection between x and w by	writing x	= w - 3	
	M1	Applies the process of substituting their $x = aw \pm b$ into $2x^3 + b$	$6x^2 - 3x + 1$	2 (= 0)	
		So accept e.g. if $x = \frac{w}{3}$ is used.			
	M1	Depends on having attempted substituting either $x = w - 3$ or	x = w + 3 i	nto the	
		equation. This mark is for manipulating their resulting equatio	n into the fo	orm	
		$pw^3 + qw^2 + rw + s(=0)$ ($p \neq 0$). The "= 0" may be implied for	or this.		
See note	A1				
	A1	Correct final equation, including "=0". Accept integer multiple	es.		
ALT 1	B 1	Selects the method of giving three correct equations each conta	$\overline{\alpha}, \overline{\beta}$	and γ .	
	M1	Applies the process of finding sum roots, pair sum and product			
	M1	Applies w^3 – (their sum roots) w^2 + (their pair sum) w – (their	_		
		Must be correct identities, but if quoted allow slips in substitu	tion, but th	e "=0"	
		may be implied.	cc	. ,	
See note	A1	At least three of p , q , r and s are correct in an equation with int (need not have "=0")	eger coeffic	nents.	
	A1	Correct final equation, including "=0". Accept multiples with i	nteger coeff	ficients.	
Note: may use another variable than w for the first four marks, but the final equation must be in terms of w					

Notes: Do not isw the final two A marks – if subsequent division by 2 occurs then mark the final

Scheme

Question

answer.

Question	Scheme	Marks	AOs
3	$n=1$, $\sum_{r=1}^{1} \frac{1}{(2r-1)(2r+1)} = \frac{1}{1\times 3} = \frac{1}{3}$ and $\frac{n}{2n+1} = \frac{1}{2\times 1+1} = \frac{1}{3}$ (true for $n=1$)	B1	2.2a
	Assume general statement is true for $n = k$. So assume $\sum_{r=1}^{k} \frac{1}{(2r-1)(2r+1)} = \frac{k}{2k+1}$ is true.	M1	2.4
	$\left[\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)} \right] = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$	M1	2.1
	$=\frac{k(2k+3)+1}{(2k+1)(2k+3)}$	dM1	1.1b
	$= \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)} = \frac{(2k+1)(k+1)}{(2k+1)(2k+3)} = \frac{(k+1)}{2(k+1)+1} \text{ or } \frac{k+1}{2k+3}$	A1	1.1b
	As $\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)} = \frac{(k+1)}{2(k+1)+1}$ then the general result is true for $n = k+1$ As the general result has been shown to be <u>true for $n = 1$</u> , and <u>true for $n = k$ implies true for $n = k+1$</u> , so the result <u>is true for all $n \in \mathbb{N}$</u>	A1cso	2.4
		(6)	
		(6	marks)

Notes

B1 Substitutes n = 1 into both sides of the statement to show they are eqaul. As a minimum expect to see $\frac{1}{1 \times 3}$ and $\frac{1}{2+1}$ for the substitutions. (No need to state true for n = 1 for this mark.)

Assumes (general result) true for n = k. (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1 Attempts to add (k+1)th term to their sum of k terms. Must be adding the (k+1)th term but allow slips with the sum.

dM1 Depends on previous M. Combines their two fractions over a correct common denominator for their fractions, which may be $(2k+1)^2(2k+3)$ (allow a slip in the numerator).

A1 Correct algebraic work leading to $\frac{(k+1)}{2(k+1)+1}$ or $\frac{k+1}{2k+3}$

A1 cso Depends on all except the **B** mark being scored (but must have an attempt to show the n = 1 case). Demonstrates the expression is the correct for n = k + 1 (both sides must have been seen somewhere) and gives a correct induction statement with **all** three underlined statements (or equivalents) seen at some stage during their solution (so true for n = 1 may be seen at the start).

For demonstrating the correct expression, accept giving in the form $\frac{(k+1)}{2(k+1)+1}$, or

reaching $\frac{k+1}{2k+3}$ and stating "which is the correct form with n = k+1" or similar –

but some indication is needed.

Note: if mixed variables are used in working (r's and k's mixed up) then withhold the final A.

Note: If *n* is used throughout instead of *k* allow all marks if earned.

Question	Scheme	Marks	AOs	
4.	$ (\mathbf{r} =) \begin{pmatrix} -2 + \lambda \\ 5 - \lambda \\ 4 - 3\lambda \end{pmatrix} \mathbf{or} \begin{pmatrix} -2 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} $ (oe)	M1	1.1b	
	So meet if $ \begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = -7 \Rightarrow (-2+\lambda) \times 1 + (5-\lambda) \times -2 + (4-3\lambda) \times 1 = -7 $	M1 A1	3.1a 1.1b	
	$\Rightarrow 0\lambda - 8 = -7 \Rightarrow -8 = -7$ a contradiction so no intersection	A1ft	2.3	
	Hence l is parallel to Π but not in it.	A1cso	3.2a	
	•	(5)		
		(5	marks)	
	Notes			
Alt 1	 M1 Forms a parametric form for the line. Allow one slip. M1 Substitutes into the equation of the plane to an equation in λ. May use Cartesian form of plane to substitute into. A1 Correct equation in λ A1ft Simplifies and derives a contradiction and deduces line and plane do not meet. Follow through in their initial equation in λ so contradiction so no intersection if λ_disappears and constants unequal line lies in plane if a tautology is arrived at meet in a point if a solution for λ is found. But do not allow for incorrect simplification from a correct initial equation in λ Note that a miscopy/misread of 7 instead of -7 can therefore score a maximum of M1M1A0A1A0. A1cso Correct deduction from correct working. This may be seen two separate statements in their working. You may see attempts at showing the line is parallel before/after deducing there is no intersection. Alt 1 Note that some may a attempt a mix of the main scheme and Alt 1. Mark under ma scheme unless Alt 1 would score higher. (1) (1) (1) (-2) (-2) (1) (-2) (-3) (-2) (-3) (1) (-2) (-3) (-2) (-3) (-3) (-3) (-3) (-3) (-3) (-3) (-3			
	Hence l is parallel to Π	A1	1.1b	
	(-2,5,4) on l , but $(1)(-2) + (-2)(5) + 1(4) = -8$	M1	1.1b	
	$-8 \neq -7$ so $(-2,5,4)$ is not on the plane.	A1ft	2.3	
	Hence l is (parallel to Π but) not in the plane.	Alcso	3.2a	
	Trenee i is (paramer to 11 but) not in the plane.	(5)	J.2a	
			marks)	
	Alt 1 Notes	(-		
	 M1 Attempts the dot product between the two direction vectors. A1 Shows dot product is zero and makes the correct deduction parallel to plane. M1 Finds a point on <i>l</i> and substitutes into the equation of Π Cartesian) A1ft Simplifies and derives a contradiction – follow through the contradiction is contradiction. 	on that line (vector or		
	arrive at a tautology, they should deduce the line is in the Alcso Correct deduction from correct working but may be split	e plane.		

Question	Scheme	Marks	AOs
Alt 2	Attempts to solve $\frac{x+2}{1} = \frac{y-5}{-1} = \frac{z-4}{-3}$ and $x-2y+z=-7$ simultaneously – eliminates one variable for M mark.	M1	3.1a
	e.g. $y = -(x+2) + 5 = -x + 3 \Rightarrow x - 2(-x+3) + z = -7 \Rightarrow 3x + z = -1$ (oe)	A1	1.1b
	Solves reduced equations, e.g. $-3(x+2) = z-4 \Rightarrow 3x+z=-2$ and $3x+z=-1 \Rightarrow (3x+z)-(3x+z)=-2-(-1)$	M1	1.1b
	\Rightarrow 0 = -1 a contradiction so no intersection	A1ft	2.3
	Hence l is parallel to Π but not in it.	A1cso	3.2a
		(5)	
		(5	marks)
	Alt 2 notes		
	 M1 Attempts to solve the Cartesian equation of the line arplane equation to eliminate one variable for the M. A1 Correct elimination of their chosen variable. (E.g may see 	•	C
	 -2x-2y-2=-7 etc) M1 Solves the reduced equations in two variables A1ft and derives a contradiction/line and plane do not meet their result, so may reach a tautology and deduce lies in p solution and deduce meet in a point. A1cso Correct deduction from correct working. 		_

Question	Schen	ne	Marks	AOs
5 (a)	Complex roots of a real polynomial oc	ccur in conjugate pairs	M1	1.2
	so a polynomial with z_1 , z_2 and z_3 as ro roots, so 5 roots in total, but a quartic l can have z_1 , z_2 and z_3 as roots.		A1	2.4
			(2)	
(b)	$\frac{z_2 - z_1}{z_3 - z_1} = \frac{-1 + 2i - (-2)}{1 + i - (-2)} = \frac{1 + 2i}{3 + i} \times \frac{3 - 2i}{3 - 2i}$ $= \frac{3 - i + 6i + 2}{9 + 1} = \frac{5 + 5i}{10} = \frac{1}{2} + \frac{1}{2}i \text{ oe}$	$\frac{-i}{-i} = \dots$	M1	1.1b
	$= \frac{3-i+6i+2}{9+1} = \frac{5+5i}{10} = \frac{1}{2} + \frac{1}{2}i \text{ oe}$		A1	1.1b
	As $\frac{1}{2} + \frac{1}{2}i$ is in the first quadrant (i	may be shown by diagram),		
	hence $\arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arctan\left(\frac{\frac{1}{2}}{\frac{1}{2}}\right)$	$(=\arctan(1)) = \frac{\pi}{4} *$	A1*	2.1
			(3)	
(c)	$\arg\left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right) = \arg\left(z_{2}-z_{1}\right) - \arg\left(z_{3}-z_{1}\right) = \arg\left(1+2i\right) - \arg\left(3+i\right)$			1.1b
	Hence $\arctan(2) - \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$ *		A1*	2.1
			(2)	
(d)	V	Line passing through z_2 and the negative imaginary axis drawn.	B1	1.1b
		Area below and left of their line shaded, where the line must have negative gradient passing through negative imaginary axis but need not pass through z_2	B1	1.1b
	Unless otherwise indicated by the str if there are multiple attempts.	udent mark Diagram 1(if used)		
			(2)	
			(9	marks)

		Notes
(a)	M1	Some evidence that complex roots occur as conjugate pairs shown, e.g. stated as in scheme, or e.g. identifying if $-1+2i$ is a root then so is $-1-2i$. Mere
		mention of complex conjugates is sufficient for this mark.
	A1	A complete argument, referencing that a quartic has at most 4 roots, but
		would need at least 5 for all of z_1 , z_2 and z_3 as roots. There should be a clear statement about the number of roots of a quartic (e.g a
		quartic has four roots), and that this is not enough for the two conjugate pairs and real root.
(b)	M1	Substitutes the numbers in expression and attempts multiplication of
		numerator and denominator by the conjugate of their denominator or uses calculator to find the quotient. (May be implied.)
		NB Applying the difference of arguments and using decimals is M0 here.
	A1	Obtains $\frac{1}{2} + \frac{1}{2}i$. (May be from calculator.) Accepted equivalent Cartesian
		forms.
	A1*	Uses arctan on their quotient and makes reference to first quadrant or draws diagram to show they are in the first quadrant. to justify the argument.
(c)	M1	Applies the formula for the argument of a difference of complex numbers
		and substitutes values (may go directly to arctans if the arguments have
		already been established). If used in (b) it must be seen or referred to in (c)
		for this mark to be awarded. Allow for $\arg(z_2 - z_1) - \arg(z_3 - z_1)$ if $z_2 - z_1$
		and $z_3 - z_1$ have been clearly identified in earlier work.
	A1*	Completes the proof clearly by identifying the required arguments and using the result of (b). Use of decimal approximations is A0.
(d)	B 1	Draws a line through z_2 and passing through negative imaginary axis.
	B 1	Correct side of bisector shaded. Allow this mark if the line does not pass
		through z_2 . But it should be an attempt at the perpendicular bisector of the
		other two points – so have negative gradient and pass through the negative real axis.
		I anora any other lines drawn for these two marks
		Ignore any other lines drawn for these two marks.

Question	Scheme	Marks	AOs
6. (a)	(mean = \overline{x} =) $\frac{1}{n} \sum_{r=1}^{n} (7+3r)$	M1	1.1a
	$\sum_{r=1}^{n} (7+3r) = \left(7\sum_{r=1}^{n} 1 + 3\sum_{r=1}^{n} r = \right)7n + 3\frac{n}{2}(n+1)$ $\overline{x} = 7 + \frac{3}{2}(n+1) = \frac{14+3n+3}{2} = \frac{1}{2}(3n+17)*$	M1	1.1b
	$\overline{x} = 7 + \frac{3}{2}(n+1) = \frac{14+3n+3}{2} = \frac{1}{2}(3n+17)*$	A1*	2.1
		(3)	
(b)	Correct overall strategy to find the variance or standard deviation. This must include: • An attempt to find the mean		
	• An attempt at $\sum (7+3r)^2$ as part of their formula (however poor, or if stated and followed by a value or if	M1	3.1a
	used with incorrect limits). • An attempt at either variance formula with their mean (allow slips in the formula)		
(Mean)	$mean (= \overline{x}) = 136$	B1	1.1b
(Sum)	Way1: $\sum_{r=1}^{n} (7+3r)^2 = \sum_{r=1}^{n} (49+42r+9r^2)$		
	$= \underbrace{\frac{49n}{2} + 42 \times \frac{1}{2} n(n+1) + 9 \times \frac{1}{6} n(n+1)(2n+1)}_{}$	<u>M1</u>	1.1b
	Way 2: $\sum_{r=1}^{n} (x_i - \overline{x})^2 = \sum_{r=1}^{n} (7 + 3r - 136)^2 = a \sum_{r=1}^{n} r^2 + b \sum_{r=1}^{n} r + c \sum_{r=1}^{n} 1$	<u>B1</u>	1.1b
	$= 9 \times \frac{1}{6} n(n+1)(2n+1) - "774" \times \frac{1}{2} n(n+1) + "16641" n$ $\text{Way 1:} = \frac{"2032690"}{85} - 136^2 = \dots \text{ or } \frac{"2032690"}{84} - \frac{85}{84} \times 136^2 = \dots$		
(Variance/st andard	Way 1: = $\frac{"2032690"}{85} - 136^2 = \dots$ or $\frac{"2032690"}{84} - \frac{85}{84} \times 136^2 = \dots$		
deviation)	Way 2: = $\frac{"460530"}{85}$ = or $\frac{"460530"}{84}$ = (using sample	M1	1.1b
	standard deviation).	A1	1.1b
	So s.d = $\sqrt{5418}$ = 73.6(g) Accept 74.0 (g) if sample s.d. used		1.10
		(6)	marks)
	I.	(>	

		Notes
(a)	M1	Selects the correct procedure for finding the mean (\overline{x}), attempting sum and dividing by n .
	M1	Splits the sum and applies the formulae for $\sum r$ (accept $7+3\frac{n}{2}(n+1)$ here)
		Or uses arithmetic series formula $\frac{1}{2}n(a+l)$ with $a=10$ and l an attempt at
		4
		$7 + 3 \times n$, or $\frac{n}{2}(2a + (n-1)d)$ with $a = 10$ and $d = 3$
	A1*	Correct work proceeding to the answer with an intermediate step shown.
		Special case: Award M0M1A0 for candidates who use $\frac{1}{2}(a+l)$ or
		equivalent without justification of the division by n .
(b)	M1	Correct overall strategy to get as far as the variance of marbles in the collection. The attempt at variance should be recognisable (though allow e.g sign slips in the
		formula for this mark) and an attempt, however poor, at $\sum (7+3r)^2$ must
		have been made
	B1	Correct value for the mean for 85 marbles (accept as a single fraction, $\frac{272}{2}$). If a
		student works algebraically until the last step, a correct final answer will imply this mark.
	M1	Expands brackets and applies summation formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to their
		expression, either in terms of n or with $n = 85$ but must have correct limits. Allow for obtaining an expression of the correct form for Way 2 if the mean is kept in terms of " n ". This mark is for correct application of these two summation formula on an attempt at $\sum_{n=1}^{\infty} (7+3r)^2$ so accept even if this is not part of an attempt at the
		at $\sum_{r=1}^{\infty} (7+3r)^2$ so accept even if this is not part of an attempt at the variance.
	B1	Correct use of $\sum_{i=1}^{n} 1 = n$ in their expression (must be correct limits).
	M1	Correctly applies variance or standard deviation formula with $n = 85$, their attempt at $\sum x^2$ (which need not be using $7 + 3r$ or correct limits) and their mean. Accept use of the sample variance/standard deviation is used (dividing by $n-1$) For reference the variance formula is
		$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \left(\frac{1}{n} \sum_{i=1}^n x_i^2\right) - \overline{x}^2 \text{where } x_r = 7 + 3r \text{ here, or accept}$
		for sample variance $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \left(\frac{1}{n-1} \sum_{i=1}^n x_i^2\right) - \frac{n\overline{x}^2}{n-1}$
	A1	Correct standard deviation to 1 decimal place. If sample standard deviation is used, the answer will be 74.0 g to 1 d.p. (74.04)
		n specifies use of summation formula and so these must be seen for the 2 nd M and ark. However, if just 2032690 appears from a calculator all other marks are

Question		Scheme	Marks	AOs			
7. (a)	$\alpha + \beta +$	$\left(\alpha + \frac{12}{\alpha} - \beta\right) = 8 \text{ so } 2\alpha + \frac{12}{\alpha} = 8$	M1	1.1b			
77 (41)		,	A1	1.1b			
	$\Rightarrow 2\alpha^2$	$-8\alpha + 12 = 0$ or $\alpha^2 - 4\alpha + 6 = 0$					
	$\Rightarrow \alpha = -$	M1	1.1b				
	$\Rightarrow \alpha = 1$	A1	1.1b				
	A correc	ct full method to find the third root. Common methods are:					
	Sum of 1	roots = 8 \Rightarrow third root = $8 - (2 + i\sqrt{2}) - (2 - i\sqrt{2}) =$					
	third ro	$poot = 2 + i\sqrt{2} + \frac{12}{2 + i\sqrt{2}} - (2 - i\sqrt{2}) = \dots$	М1	2.10			
	Product	of roots = 24 \Rightarrow third root = $\frac{24}{(2+i\sqrt{2})(2-i\sqrt{2})} =$	M1	3.1a			
		$(z-\beta) = z^2 - 4z + 6 \Rightarrow f(z) = (z^2 - 4z + 6)(z-\gamma) \Rightarrow \gamma = \dots$ division to find third factor).					
		the roots of $f(z) = 0$ are $2 \pm i\sqrt{2}$ and 4	A1	1.1b			
			(6)				
(b)	E.g. f(4)	$= 0 \Rightarrow 4^3 - 8 \times 4^2 + 4p - 24 = 0 \Rightarrow p = \dots$					
	Or $p = ($	$2 + i\sqrt{2}$ $(2 - i\sqrt{2}) + 4(2 + i\sqrt{2}) + 4(2 - i\sqrt{2}) \Rightarrow p =$	M1	3.1a			
	Or $f(z)$	$=(z-4)(z^2-4z+6) \Rightarrow p=$					
	$\Rightarrow p = 2$	22 cso	A1	1.1b			
		(2)					
			(8	marks)			
		Notes					
(a)	M1	Equates sum of roots to 8 and obtains an equation in just α .					
	A1	Obtains a correct equation in α .	lva thia agu	ation hy			
	M1	Forms a three term quadratic equation in α and attempts to sol either completing the square or using the quadratic formula to g	_	-			
	A1	$\alpha = 2 \pm i\sqrt{2}$	J				
	M1	Any correct method for finding the remaining root. There are v	arious route	es			
		possible. See scheme for common ones.					
		Allow this mark if -24 is used as the product.					
	A1	See note below for a less common approach. Third root found with all three roots correct. Note α and β need	l not be ider	ntified.			
(b)	M1	Any correct method of finding p . For example, applies the factor					
		of finding the pair sum of roots, or uses the roots to form $f(z)$.		_			
	A1	p = 22 by correct solution only. Note: this can be found using	only their o	complex			
		roots from (a) (e.g. by factor theorem)					

Note for (a) final M – it is possible to find the second and third roots using only one initial root (e.g. if second root forgotten or error leads to only one initial root being found).

Product of roots =
$$\alpha\beta\left(\alpha + \frac{12}{\alpha} - \beta\right) = 24 \Rightarrow \alpha\beta^2 - (\alpha^2 + 12)\beta + 24 = 0$$
, substitutes in α and attempts

to solve the quadratic in β to achieve remaining roots. The final M can be gained once three roots in total have been obtained. (This is unlikely to be seen as part of a correct answer.) Allow if -24 has been used for the product.

Question	Scheme	Marks	AOs
8. (a)	Note: Allow alternative vector forms throughout, e.g row vectors, i , j , k notation $\mathbf{b} = \pm \begin{bmatrix} 300 \\ 300 \\ -50 \end{bmatrix} - \begin{pmatrix} -300 \\ 400 \\ -150 \end{bmatrix} = \pm \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix}$	M1	1.1b
	So $\mathbf{r} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix}$ oe $\begin{pmatrix} e.g. \ \mathbf{r} = \begin{pmatrix} 300 \\ 300 \\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix} \end{pmatrix}$	A1	2.5
(1) (1)	1, 200	(2)	2.2
(b)(i)	$ \frac{k = 200}{\text{If } M \text{ is the point on mountain, and } X \text{ a general point on the line then eg.} } $	M1	2.2a 3.1b
	e.g. $\begin{pmatrix} -400 + 600\lambda \\ 200 - 100\lambda \\ -250 + 100\lambda \end{pmatrix} \bullet \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = 0 \Rightarrow \lambda = \dots$	dM1	1.1b
	So e.g. $\overline{OX} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = \dots$	M1	3.4
	So coordinates of X are (150, 325, -75) Accept as $\begin{pmatrix} 150 \\ 325 \\ -75 \end{pmatrix}$	A1	1.1b
		(5)	
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} = \dots$	M1	1.1b
	Awrt $221m$ from correct working, so λ must have been correct. (Must include units)	A1	1.1b
		(2)	
(c)	$ \overrightarrow{OP} = \sqrt{(-300)^2 + 400^2 + (-150)^2} \approx 522$ $ \overrightarrow{OQ} = \sqrt{300^2 + 300^2 + 50^2} \approx 427$	M1	1.1b
	New tunnel length is signficantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed.	A1ft	2.2b
		(2)	
(d)	E.g. The mountainside is not likely to be flat so a plane may not be a good model. The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate. A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the model.	B1	3.5b
		(1)	
		(12	marks)

	Notes				
(a)	M1	Attempts the direction between positions P and Q . If no method shown, two correct entries imply the method.			
(b)	A1	A correct equation in the correct form. Any point on the line may used, and any non-zero multiple of the direction. Must begin $\mathbf{r} = \dots$ Note: mark part (b) as a whole.			
(i)	B1	Correct value of k deduced.			
(1)	M1	Realises the need to find the distance from the point on the mountain to a general			
	1411	point on the line.			
	dM1	Takes the dot product with the direction vector of line and sets to zero and proceeds to find a value of λ . If working with k as well, allow for finding either λ in terms of k or k in terms of λ .			
	M1	Substitutes their λ into their line equation. (This may not have come from correct work, but the method is for using the line equation here.) May be implied by two out of three correct coordinates for their λ			
	Note: May omit this step and substitute λ into \overrightarrow{MX} . This gains M0 here, b				
	A1	gain M1A1 in (ii) for finding the length of \overrightarrow{MX} . Correct point.			
(b)(ii)	M1	Uses the distance formula with their point and M , or with their \overrightarrow{MX} from (i). (May be implied by two out of three correct coordinates for their λ)			
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m			
(c)	M1	Calculates the two distances OP and OQ .			
` ,	A1ft	Makes an appropriate conclusion for their tunnel length, but distances <i>OP</i> and <i>OQ</i> must be correct. A reason and a conclusion is needed.			
		Accept for reason e.g "significantly shorter" or "tunnel is more than 100m less than either existing accessway", as these act as a comparative judgement. But do not accept just "shorter" or just inequalities given with no comparative evidence.			
(d)	B1	Any appropriate criticism of the model given. The model must be referred to in some way – e.g. criticise the straightness/thickness of line, flatness of plane or lack of taking strata etc of mountain into account (as e.g this means line may not be straight). Note: reference to measurements not being correct is NOT a limitation of the			
		model.			

For reference Some of the other common equations/values of λ in (b)(i) are:

$$\overline{MX} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} 100 \\ 200 \\ 100 \end{pmatrix} = \begin{pmatrix} -400 + 6\lambda \\ 200 - \lambda \\ -250 + \lambda \end{pmatrix} \Rightarrow \lambda = 75$$

$$\overline{MX} = \begin{pmatrix} 300 \\ 300 \\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} - \begin{pmatrix} 100 \\ 200 \\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 600\lambda \\ 100 - 100\lambda \\ -150 + 100\lambda \end{pmatrix} \Rightarrow \lambda = -\frac{1}{4}$$

$$\overline{MX} = \begin{pmatrix} 300 \\ 300 \\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} 100 \\ 200 \\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 6\lambda \\ 100 - \lambda \\ -150 + \lambda \end{pmatrix} \Rightarrow \lambda = -25$$

(If the negative direction vectors are used in any case, the value of λ is just the negative of the above.) **See Appendix for some alternatives to part (b)**

9. A correct overall strategy, an attempt at integrating y^2 with respect to x combine in some way with the volume of revolution formula (use of $\pi \int y^2 dx$ or $\alpha \int y^2 dx$ for any variable α is fine) followed by attempt to find an angle/form an equation in θ $y^2 = kx^{\frac{3}{2}} + + \frac{m}{x^{\frac{4}{3}}} \text{ or } y^2 = kx^{\frac{7}{4}} + + mx^{-\frac{4}{3}} \text{ where } \text{ is one or two} $ more terms. $y^2 = 4x^{\frac{3}{4}} + 4x^{-\frac{4}{3}} + x^{-\frac{4}{3}} \text{ or } y^2 = 4x^{\frac{3}{4}} + 2x^{-\frac{1}{3}} + 2x^{-\frac{1}{3}} \text{ (oe)} $ $A1 1.1b$ $y^2 dx = \int 4x^{\frac{3}{4}} + \frac{4}{x^{\frac{4}{3}}} + \frac{1}{x^{\frac{4}{3}}} dx = \alpha x^{\frac{5}{3}} + \beta x^{\frac{3}{2}} + \gamma x^{-\frac{1}{3}} $ $= \frac{12x^{\frac{5}{4}}}{5} + 6x^{\frac{3}{4}} - \frac{3}{x^{\frac{3}{3}}} \int_{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\frac{12x^{\frac{3}{3}}}{5} + 6x^{\frac{3}{4}} - \frac{3}{8^{\frac{5}{3}}} \right] - \left[\frac{12x\left(\frac{1}{8}\right)^{\frac{5}{3}}}{5} + 6x\left(\frac{1}{8}\right)^{\frac{5}{4}} - \frac{3}{8^{\frac{5}{3}}} \right] - \left[\frac{12x\left(\frac{1}{8}\right)^{\frac{5}{3}}}{5} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} - \frac{461}{8} \right] + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} - \frac{3}{8^{\frac{5}{3}}} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} + 6x\left(\frac{1}{8}\right)^{\frac{5}{3}} + 6x\left(\frac{1}$	Question	Scheme	Marks	AOs
more terms. $y^{2} = 4x^{\frac{2}{3}} + 4x^{-\frac{1}{3}} + x^{-\frac{4}{3}} \text{ or } y^{2} = 4x^{\frac{2}{3}} + 2x^{-\frac{1}{3}} + x^{-\frac{4}{3}} + 2x^{-\frac{1}{3}} \text{ (oe)} $ $A1 $	9.	combine in some way with the volume of revolution formula (use of $\pi \int y^2 dx$ or $\alpha \int y^2 dx$ for any variable α is fine) followed by attempt to	M1	3.1a
$\int y^{2} dx = \int 4x^{\frac{2}{3}} + \frac{4}{x^{\frac{1}{3}}} + \frac{1}{x^{\frac{4}{3}}} dx = \alpha x^{\frac{5}{3}} + \beta x^{\frac{2}{3}} + \gamma x^{-\frac{1}{3}}$ M1 1.1b $= \frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \Big _{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\frac{12x(\frac{1}{8})^{\frac{1}{3}} - \frac{3}{(\frac{1}{8})^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{2} = \theta = \dots$ M1 3.1a $OR \pi \left[\frac{12x^{\frac{2}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\frac{12x8^{\frac{2}{3}} + 6x8^{\frac{2}{3}} - \frac{3}{8^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{4} + 6x(\frac{1}{8})^{\frac{1}{3}} + 6x(\frac{1}{8})^{\frac{1}{3}} + 6x(\frac{1}{8})^{\frac{1}{3}} - \frac{3}{(\frac{1}{8})^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{4} = \dots$ followed by $\frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Rightarrow \theta = \dots$ $\theta = \frac{40}{9} \text{ (radians)}$ A1 1.1b		X and a second s	M1	1.1b
$\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \text{ (oe)}$ $\frac{11x}{6}$ $\frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\left(\frac{12 \times 8^{\frac{1}{3}}}{5} + 6 \times 8^{\frac{1}{3}} - \frac{3}{8^{\frac{1}{3}}} \right) - \left(\frac{12 \times \left(\frac{1}{8} \right)^{\frac{1}{3}}}{5} + 6 \times \left(\frac{1}{8} \right)^{\frac{1}{3}} - \frac{3}{\left(\frac{1}{8} \right)^{\frac{1}{3}}} \right) \right] = \frac{461}{2} \Rightarrow \theta = \dots$ $OR \ \pi \left[\frac{12x^{\frac{1}{3}}}{5} + 6x^{\frac{1}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\left(\frac{12 \times 8^{\frac{1}{3}}}{5} + 6 \times 8^{\frac{1}{3}} - \frac{3}{8^{\frac{1}{3}}} \right) - \left(\frac{12 \times \left(\frac{1}{8} \right)^{\frac{1}{3}}}{5} + 6 \times \left(\frac{1}{8} \right)^{\frac{1}{3}} - \frac{3}{\left(\frac{1}{8} \right)^{\frac{1}{3}}} \right) \right] = \dots$ $followed by \ \frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Rightarrow \theta = \dots$ $\theta = \frac{40}{9} \text{ (radians)}$ $A1 1.1b$ (8)		$y^2 = 4x^{\frac{2}{3}} + 4x^{-\frac{1}{3}} + x^{-\frac{4}{3}}$ or $y^2 = 4x^{\frac{2}{3}} + 2x^{-\frac{1}{3}} + x^{-\frac{4}{3}} + 2x^{-\frac{1}{3}}$ (oe)	A1	1.1b
$\frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\frac{12 \times 8^{\frac{5}{2}}}{5} + 6 \times 8^{\frac{2}{3}} - \frac{3}{8^{\frac{1}{3}}} \right] - \left[\frac{12 \times \left(\frac{1}{8}\right)^{\frac{5}{3}}}{5} + 6 \times \left(\frac{1}{8}\right)^{\frac{2}{3}} - \frac{3}{\left(\frac{1}{8}\right)^{\frac{1}{3}}} \right] = \frac{461}{2} \Rightarrow \theta = \dots$ $OR \ \pi \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\frac{12 \times 8^{\frac{5}{3}}}{5} + 6 \times 8^{\frac{2}{3}} - \frac{3}{8^{\frac{1}{3}}} \right] - \frac{12 \times \left(\frac{1}{8}\right)^{\frac{2}{3}}}{5} + 6 \times \left(\frac{1}{8}\right)^{\frac{2}{3}} - \frac{3}{\left(\frac{1}{8}\right)^{\frac{1}{3}}} \right] = \dots$ $followed by \ \frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Rightarrow \theta = \dots$ $\theta = \frac{40}{9} \text{ (radians)}$ $A1 1.1b$ (8)		$\int y^2 dx = \int 4x^{\frac{2}{3}} + \frac{4}{x^{\frac{1}{3}}} + \frac{1}{x^{\frac{4}{3}}} dx = \alpha x^{\frac{5}{3}} + \beta x^{\frac{2}{3}} + \gamma x^{-\frac{1}{3}}$	M1	1.1b
$\Rightarrow \frac{\theta}{2} \left[\left(\frac{12 \times 8^{\frac{4}{5}}}{5} + 6 \times 8^{\frac{2}{5}} - \frac{3}{8^{\frac{4}{5}}} \right) - \left(\frac{12 \times \left(\frac{1}{8} \right)^{\frac{4}{5}}}{5} + 6 \times \left(\frac{1}{8} \right)^{\frac{2}{5}} - \frac{3}{\left(\frac{1}{8} \right)^{\frac{4}{5}}} \right) \right] = \frac{461}{2} \Rightarrow \theta = \dots$ $OR \ \pi \left[\frac{12 \times x^{\frac{5}{5}}}{5} + 6 \times x^{\frac{2}{5}} - \frac{3}{x^{\frac{1}{5}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\left(\frac{12 \times 8^{\frac{5}{5}}}{5} + 6 \times 8^{\frac{2}{5}} - \frac{3}{8^{\frac{4}{5}}} \right) - \left(\frac{12 \times \left(\frac{1}{8} \right)^{\frac{4}{5}}}{5} + 6 \times \left(\frac{1}{8} \right)^{\frac{4}{5}} - \frac{3}{\left(\frac{1}{8} \right)^{\frac{4}{5}}} \right) \right] = \dots$ $followed by \ \frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Rightarrow \theta = \dots$ $\theta = \frac{40}{9} \text{ (radians)} $ $A1 1.1b$ (8)		$=\frac{12x^{\frac{5}{3}}}{5}+6x^{\frac{2}{3}}-\frac{3}{x^{\frac{1}{3}}} \text{ (oe)}$		
OR $\pi \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\left(\frac{12 \times 8^{\frac{5}{3}}}{5} + 6 \times 8^{\frac{2}{3}} - \frac{3}{8^{\frac{1}{3}}} \right) - \left(\frac{12 \times \left(\frac{1}{8} \right)^{\frac{5}{3}}}{5} + 6 \times \left(\frac{1}{8} \right)^{\frac{2}{3}} - \frac{3}{\left(\frac{1}{8} \right)^{\frac{1}{3}}} \right) \right] = \dots$ followed by $\frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Rightarrow \theta = \dots$ $\theta = \frac{40}{9} \text{ (radians)}$ A1 1.1b		$\frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \frac{461}{2}$		
followed by $\frac{\theta}{2\pi} \times = \frac{461}{2} \Rightarrow \theta =$ $\theta = \frac{40}{9} \text{ (radians)}$ A1 1.1b			M1	3.1a
$\theta = \frac{40}{9} \text{ (radians)} $ A1 1.1b		[(8))]		
(8)		followed by $\frac{\theta}{2\pi} \times = \frac{461}{2} \Rightarrow \theta =$		
		$\theta = \frac{40}{9}$ (radians)	A1	1.1b

M1 A correct overall strategy, either finding full volume rotated by 2π first, then performing some kind of scaling, or using $\alpha \int y^2 dx$ for a variable α (ideally $\frac{\theta}{2}$, but
performing some kind of scaling, or using $\alpha \int u^2 dx$ for a variable α (ideally θ but
performing some kind of scaling, of using $\alpha \int y dx$ for a variable α (ideally $\frac{1}{2}$, but
for the strategy accept with any variable multiple), to form an equation in just the angle.
Attempting to square y to a three or four term expression. Look for correct powers on first and last term with some term(s) in the middle.
A1 Correct expansion in three or four terms – award when first seen.
Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms.
A1ft Two terms of integral correct. Follow through on their expansion. Need not be simplified.
A1 Fully correct integral. Need not be simplified. May still be four terms
M1 Either: Substitutes limits and subtracts correct way round (must be seen or implied
by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ .
Or: Substitutes limits and subtracts correct way round (seen or implied) and
multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before
equating to $\frac{461}{2}$.
The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$
directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$
Correct angle found. Accept $\frac{40}{9}$, awrt 4.44 or awrt 255° (as long as the degrees
units are made clear – do not accept just 255) is wonce a correct value of θ is found.

<u>Special case</u> The question specified that algebraic integration must be used, so use of a calculator to find the integral cannot score the marks for integration but may be allowed the strategy and answer marks. A maximum of M1M0A0M0A0M0A1A1 is available in such cases.

Expanding y^2 first but showing no integration can score the second M and first A (if earned) as well.

Note that $\int_{1/8}^{8} \left(2x^{\frac{1}{3}} + x^{-\frac{2}{3}}\right)^{2} dx = \frac{4149}{40} = 103.725$ but just this alone is worth **no marks**. There must

be an attempt to incorporate this within a strategy to gain access to marks.

10. (a) a represents the proportion of juvenile chimpanzees that (survive and) remain juvenile chimpanzees the next year. (1)	Question	Scheme	Marks	AOs
(ii) Determinant = $0.82a - 0.08 \times 0.15$	10. (a)		B1	3.4
(b)(i)		and) remain juvenile chimpanzees the next year.		
	(b)(i)	Determinant = $0.82a - 0.08 \times 0.15$	` ,	1.1b
(ii) $ \begin{pmatrix} a & 0.15 \\ 0.08 & 0.82 \end{pmatrix}^{-1} \begin{pmatrix} 15360 \\ 43008 \end{pmatrix} = \frac{1}{0.82a - 0.012} \begin{pmatrix} 0.82 \times 15360 - 0.15 \times 43008 \\ (-0.08) \times 15360 + 43008a \end{pmatrix} $ OR forms equations $ \frac{15360 = aJ_0 + 0.15 \times J_0}{43008 = 0.08 \times J_0 + 0.82 \times J_0} $ $ \frac{1}{0.82a - 0.012} \begin{bmatrix} 6144 + (43008a - 1228.8) \\ 94915.2 + 43008a = 64000(0.82a - 0.012) \Rightarrow a = \\ OR \\ J_0 = \frac{15360 - (64000 - J_0)}{J_0} = $ $ \frac{a}{a} = \frac{15360 - (64000 - J_0)}{J_0} = $ $ \frac{a}{a} = \frac{5683.2}{9472} = 0.60 $ Initial juvenile population = $ \frac{"6144"}{"0.48"} = 12800 $ So change of 2560 juveniles hais increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0 . (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_0 , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ J_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ M_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	(*)(*)			
(ii) $ \begin{bmatrix} a & 0.15 \\ 0.08 & 0.82 \end{bmatrix}^{-1} \begin{bmatrix} 15360 \\ 43008 \end{bmatrix} = \frac{1}{0.82a - 0.012} \begin{bmatrix} 0.82 \times 15360 - 0.15 \times 43008 \\ (-0.08) \times 15360 + 43008a \end{bmatrix} $ M1 3.1a OR forms equations $ \begin{bmatrix} 15360 = aJ_0 + 0.15 \times A_0 \\ 43008 = 0.08 \times J_0 + 0.82 \times A_0 \end{bmatrix} $ M1 3.1a $ \begin{bmatrix} 1 \\ 0.82a - 0.012 \\ 0.82a - 0.012 \end{bmatrix} \begin{bmatrix} 6144 + (43008a - 1228.8) \\ -24915.2 + 43008a = 64000(0.82a - 0.012) \Rightarrow a = \end{bmatrix} $ OR $ A_0 = 64000 - J_0 \Rightarrow 43008 = 0.08 \times J_0 + 0.82 \times (64000 - J_0) = J_0 = $ M1 3.1a $ \Rightarrow a = \frac{15360 - (64000 - J_0)}{J_0} = $ (3) $ a = \frac{5683.2}{9472} = 0.60 $ A1 1.1b $ \hline $				1.1b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(**)		(3)	
$ \begin{array}{c} \Rightarrow 4915.2 + 43008a = 64000(0.82a - 0.012) \Rightarrow a = \dots \\ \text{OR} \\ A_0 = 64000 - J_0 \Rightarrow 43008 = 0.08 \times J_0 + 0.82 \times (64000 - J_0) = J_0 = \dots \\ \Rightarrow a = \frac{15360 - (64000 - J_0)}{J_0} = \dots \\ \hline \\ a = \frac{5683.2}{9472} = 0.60 \\ \hline \\ \text{Initial juvenile population} = \frac{"6144"}{"0.48"} = 12800 \\ \hline \\ \text{So change of 2560 juvenile chimpanzees} \\ \hline \\ \text{Co} \\ \hline \\ \text{As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) - but they must have made an attempt at it to find at least a value for J_0) \hline \\ \text{(d)} \\ \hline \\ \text{Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n, and a matrix multiplication of increased dimension set up. Accept 3 \times 3, 3 \times 2 or 2 \times 3 matrices including all three categories in the column vector. \hline \\ \text{The corresponding matrix model will have the form} \\ \hline \\ \text{(} J_{n+1} \\ J_{n} \\ J$	(ii)	OR forms equations $15360 = aJ_0 + 0.15 \times A_0$	M1	3.1a
(iii) Initial juvenile population = $\frac{"6144"}{"0.48"}$ = 12800 M1 3.4 So change of 2560 juvenile chimpanzees A1 1.1b (c) As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)		$\Rightarrow 4915.2 + 43008a = 64000(0.82a - 0.012) \Rightarrow a = \dots$ OR $A_0 = 64000 - J_0 \Rightarrow 43008 = 0.08 \times J_0 + 0.82 \times (64000 - J_0) = J_0 = \dots$	M1	3.1a
(iii) Initial juvenile population = $\frac{"6144"}{"0.48"}$ = 12800 M1 3.4 So change of 2560 juvenile chimpanzees A1 1.1b (c) As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)		$a = \frac{5683.2}{9472} = 0.60$		1.1b
So change of 2560 juvenile chimpanzees (c) As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	/••• \	W 64 4 4 W	(3)	
So change of 2560 juvenile chimpanzees (c) As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	(111)	Initial juvenile population = $\frac{6144}{0.48}$ = 12800	M1	3.4
(c) As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)		So change of 2560 juvenile chimpanzees	A1	1.1b
initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0) (d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)			(2)	
(d) Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	(c)	initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made	B1ft	3.5a
and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector. The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)			(1)	
The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & 0 \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	(d)	and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices	M1	3.5c
		The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & \underline{0} \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned		3.3
			` ′	marks)

	Notes			
(a)	B1	Correct interpretation. Need not mention survival but must be clear it is the (proportion of) juveniles that remain as juveniles the next year (ie those that survive but don't progress to adulthood). E.g. accept "(number of) juveniles who do not become adults" but do not accept "surviving juveniles".		
		Mark part (b) as a whole.		
(b)(i)	M1	Attempts the determinant in terms of a Allow miscopies for the attempt. Allow $0.82a - 0.12$ as a slip.		
	M1	Attempts the form of the inverse, swapped leading diagonals and sign changed on both off diagonals. Allow miscopies of the numbers but the signs must be correct.		
	A1	Correct inverse matrix		
(ii)	M1	Use the inverse matrix and attempts to find the initial juvenile and adult populations. (May have determinant 1 for this mark.) Alternatively, sets up simultaneous equations from the original system, $15360 = aJ_0 + 0.15 \times A_0 \text{ and } 43008 = 0.08 \times J_0 + 0.82 \times A_0 \text{ Accept with } J_n \text{ and } J_n \text$		
		A_n or other appropriate variables.		
	M1	Uses the sum of initial populations equals 64000 in an attempt to find <i>a</i> . (May have determinant 1 for this mark.)		
		If using alternative, use of e.g. $A_0 = 64000 - J_0$ in second equation to find J_0 ,		
		followed by attempt to find a. Award for an attempt to solve the equations, but don't be too concerned with the algebraic process as long as they are attempting to use all three equations.		
	A1	Correct value, $a = 0.6$ (or 0.60 or $\frac{3}{5}$).		
(iii)	M1	Uses their a to find the value of J_0 . This mark may be gained for work done in (ii) if the alternative has been used but must have come from a correct method.		
	A1	Correct difference found, as long as there is no contradictory statement – so "decrease of 2560" is A0.		
(c)	B1ft	Comments that the change is an increase so does not fit the model. Follow through their answer to (b) as long as at least a value for J_0 has been found. If a decrease has been found allow for commenting the model is suitable. If an answer is given to (b)(iii), follow through on whatever their answer is. If no answer has been given, but an initial population found, a comparison should be made between this value and 153600 with conclusion must be consistent with their answer for J_0		
(d)	M1	Introduces a third category (may be <i>M</i> ature, <i>E</i> lderly or any suitable letter used) and sets up a matrix multiplication (the left hand side may be missing for this mark) with all three categories in the column vector. The dimension of the matrix		
	A1	should be 3 in at least either row or column, and there should be a 3×1 vector. Sets up the new matrix equation, including both sides and making clear the zero (underlined) so that the correct progression that no new juveniles arise from the mature chimpanzees is clear. Overlook other values, though ideally the other two zeroes are shown too, to indicate mature chimpanzees do not regress to adulthood, and juveniles cannot proceed directly to mature chimpanzees.		

Appendix: Alternatives to 8(b)

Note that variations may occur with the line equation chosen in part (a), but mark as follows:

Question		Scheme	Marks	AOs	
Alt 1 (b)(i)	As per	main scheme.	B1 M1	2.2a 3.1b	
()()	$d^{2} = (-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $= 380000\lambda^{2} - 570000\lambda + 262500$ $= 380000 \left(\lambda - \frac{3}{4}\right)^{2} + 48750 \Rightarrow \lambda = \dots$			1.1b	
		main scheme.	M1 A1	3.4 1.1b	
(ii)	Langth	of tunnel is $\sqrt{"48750"} = \dots$	(5) M1	1.1b	
()	Awrt 2	221m from correct working, so completion of square must have correct. (Must include units)	A1	1.1b	
			(2)		
		Notes			
(i)	B1M 1 M1 dM1	1 Realises the need to find the distance from the point on the mountain to a general point on the line.			
	M1A	$A, B, C, D \neq 0$ but B may be 1. As per main scheme.			
(ii)	M1 Correct method for the distance. May be as per main scheme, or via extracting from the completed square constant term.			g from	
Alt 2		Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m	B1	2.2a	
(b)(i)	As per	main scheme.	M1	3.1b	
()()	= 3	$(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $380000\lambda^{2} - 570000\lambda + 262500$ $^{2}) = 0 \Rightarrow 760000\lambda - 570000 = 0 \Rightarrow \lambda = \dots$	dM1	1.1b	
		main scheme.	M1 A1	3.4 1.1b	
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} =$		(5) M1	1.1b	
	Awrt 221m from correct working, differentiation etc must have been correct. (Must include units)			1.1b	
	LOTTEC	i. (Musi menude umis)	1	1	

		Notes			
	As per main scheme except for:				
(i)	dM1 Attempts the distance or distance squared of \overrightarrow{MX} , differentiates and set to zero to				
	find λ for minimum distance.				
(ii)	M1 May substitute λ into the distance squared formula to find distance.				
Alt 3	k = 20	0	B1	2.2a	
(b)(i)	$\overrightarrow{MP} =$	the point on mountain, then e.g (may use Q rather than P) $ \begin{pmatrix} -400 \\ 200 \\ -250 \end{pmatrix} \Rightarrow \cos \theta = \frac{\begin{pmatrix} -400 \\ 200 \\ -250 \end{pmatrix} \cdot \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix}}{\sqrt{(-400)^2 + 200^2 + (-250)^2} \sqrt{600^2 + (-100)^2 + 100^2}} $ So $\theta = \dots$ or $\theta = \dots$ (where θ is the angle between the line and \overrightarrow{MP})	M1	3.1b	
	$\Rightarrow \overline{P} $	$s \theta =$ or $\theta =$ (where θ is the angle between the line and \overrightarrow{MP}) $ \overrightarrow{X} = \overrightarrow{MP} \cos \theta =$	dM1	1.1b	
	So e.g. $\overline{OX} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \overline{\begin{vmatrix} \overline{PX} \\ 600 \\ 100 \end{vmatrix}} \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \frac{"75\sqrt{8}"}{100\sqrt{38}} \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = \dots$ So coordinates of X are (150, 325, -75) Accept as $\begin{pmatrix} 150 \\ 325 \\ -75 \end{pmatrix}$				
			(5)		
(ii)	Length	n of tunnel is $ \overrightarrow{MP} \sin \theta = \dots$ (oe)	M1	1.1b	
	Awrt 2	221m from correct working. (Must include units)	A1	1.1b	
			(2)		
		Notes			
(i)	B1	Correct value of k deduced.			
	M1	Finds \overrightarrow{MP} (or \overrightarrow{MQ}) and attempts scalar product formula with this			
		of the line to find the angle or cosine of the angle between line and	MP (or	MQ)	
	dM1	Uses their angle with the cosine to find the length of \overrightarrow{PX} (or \overrightarrow{QX}). Accept		
		equivalent trigonometric methods (e.g. finding opposite side first and using tangent or Pythagoras.			
	M1				
	A1	at shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us			
(ii)	M1 with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept equivalent trigonometric methods.				
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m			
Hasful dia		, <u> </u>			

Note for
$$P$$
, $\cos \theta = \pm \frac{57}{\sqrt{38}\sqrt{105}}$, $\theta = 25.5...^{\circ}$ and $\left| \overline{PX} \right| = 75\sqrt{38}$
For $Q \cos \theta = \pm \frac{19}{\sqrt{38}\sqrt{29}}$, $\theta = 55.08...^{\circ}$, $\left| \overline{QX} \right| = 25\sqrt{38}$