

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics AS Further Statistics 2 Paper 8FM0_24

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 8FM0_24_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question				Sch	eme					Marks	AOs
1(a)	Skater Judge	AR	C	D	E	F	G	Н		M1	1.1b
	$ \begin{array}{c} 1\\ 2\\ d^2 \end{array} $	2 3 1 2 1 1	1 3 4	5 4 1	4 5 1	6 6 0	7 8 1	8 7 1	-	dM1	1.1b
	$\frac{\sum d^2 = 10}{r_s = 1 - \frac{6 \times "1}{8(64 - 1)^2}}$	0.1		-							
	$r_s = 1 - \frac{6 \times 1}{8(64 - 1)}$	<u>0"</u> -1)								M1	1.1b
	$r_s = 0.8809$						a	wrt 0.	881	A1 (4)	1.1b
(b)	$H_0: \rho = 0$ H	$I_1 \cdot \rho > 0$								B1	2.5
	Critical Value		33							B1 B1	1.1b
	$r_s = 0.8809$ lies in the critical region/reject H ₀ /significant							M1	2.1		
	There is evidence that the two judges are in agreement.							Alcso	2.2b		
										(4)	
(c)	The $\sum d^2$ will decrease since the new rankings given by Judge 1 are now the same as the rankings given by Judge 2 for Skater D and E whereas previously they were different							M1	2.4		
	therefore Spe			relatio	n coeff	icient	will ir	ncreas	e	A1	2.2a
										(2)	
					lotes					(10 m	arks)
dM1: M1: fo	or an attempt t dep on previou or use of $1 - \frac{62}{3}$	ıs M mark b	being a	e row (warde	(at leas ed. For a	an atte	mpt a		d^2 row for the	ir ranks.	
(b) B1: B	vrt 0.881 oth hypotheses or correct critic			•	2 tail te	est (sig	n mus	st mat	tch their r_s)		
M1: f A1cso	or comparing t All previous seen	their 0.881 war	with "t ded. F	heir 0 or a co	.8333" orrect c	ontext	ual co		5	ntradictio	ns
· · ·	or a correct exp 1^{-2}	-				er give	en.				
	d^2 decreases of								2		
ar	d idea of same	e rankings e	$d^2 w$	ill red	uce by	2 . Do	not a	llow a	l^2 will reduce l	oy 1	

and idea of same rankings eg d^2 will reduce by 2. Do not allow d^2 will reduce by 1 A1: for a correct deduction from the information. Allow closer to 1.

Question	Scheme	Marks	AOs
2(a)	$\int \frac{t}{120} dt = \frac{t^2}{240}$ and use of F(4) = 0 or F(16) = 1 or limits of t and 4	- M1	2.1
	or attempt at area of trapezium allow 1 mistake. $\frac{1}{2} \times (t-4) \left(\frac{4}{120} + \frac{t}{120} \right)$		
	$=\frac{t^2}{240}-\frac{1}{15}$	A1	1.1b
		(2)	
(b)	$F(10) - F(5) = \frac{100}{240} - "c" - \frac{25}{240} + "c"$ $= \frac{5}{16}$	M1	1.1b
	$=\frac{5}{16}$	A1	1.1b
		(2)	
(c)	$\frac{m^2}{240} - \frac{1}{15} = 0.5$	M1	1.1b
	<i>m</i> = 11.66 awrt 11.7	A1	1.1b
()		(2)	
(d)	$F(k) = \frac{2}{3} (1 - F(k)) \text{or} \int_{4}^{k} \frac{t}{120} dt = \frac{2}{3} \int_{k}^{16} \frac{t}{120} dt$	M1	3.1a
	$\frac{k^2}{240} - \frac{1}{15} = \frac{2}{3} \left(1 - \left(\frac{k^2}{240} - \frac{1}{15} \right) \right) \text{ or } \frac{k^2}{240} - \frac{1}{15} = \frac{2}{3} \times \left(\frac{16}{15} - \frac{k^2}{240} \right)$	dM1	1.1b
	$\frac{k^2}{144} = \frac{7}{9}$		
	$k = \sqrt{112}$ or awrt 10.6	A1	1.1b
	Alternative		
	Let $P(T < k) = p$ then $p = \frac{2}{3}(1-p)$: $p = \frac{2}{5}$	(M1)	
	$\frac{k^2}{240} - \frac{1}{15} = \frac{2}{5}$	(dM1)	
	$k = \sqrt{112}$ or awrt 10.6	(A1)	
		(3)	
	Netes	(9	marks
(a) M1: for	Notes • attempting to integrate and a correct method		
A1: $=\frac{1}{2}$	$\frac{t^2}{240} - \frac{1}{15}$ or $= \frac{t^2}{240} - 0.0667$		
(b) M1: wri	ting or using $F(10) - F(5)$		
A1: aw	rt $\frac{5}{16}$ or 0.3125 or exact equivalent		
(c) M1: sett	ing their $F(t) = 0.5$		
	t 11.7 or $2\sqrt{34}$ or exact equivalent		
d) M1: Sett	ing up a correct equation to solve the mathematical problem or setting up c	orrect equa	ation to

M1: Setting up a correct equation to solve the mathematical problem or setting up corfind *p* and an attempt to solvedM1: attempted to integrate and limits substituted or using "Their F(k)" = "their *p*" ng up correct equ

A1: $\sqrt{112}$ or awrt 10.6

Question	Scheme	Marks	AOs
3(a)	$\left[S_{ll} = 26.2326 - \frac{16.06^2}{10} = 0.44024\right]$		
	$r = \frac{42.786}{\sqrt{9936.9 \times "0.44024"}}$	M1	1.1b
	r = 0.64689 awrt 0.647	A1	1.1b
(b)	"0.647" coding has no effect on the pmcc	(2) B1ft	1.1b
(c)	l - 20 = 0.00431(w - 6) - 18.87	(1) M1	3.1a
	$l = 0.00431w + \dots$	M1	1.1b
	l = 0.00431w + 1.10414	A1 (3)	1.1b
(d)	$l = 0.00431 \times 100 + 1.10 = 1.53$	B1ft (1)	3.4
(e)	RSS = "0.44024" - $\frac{(42.786)^2}{9936.9}$ or "0.44024" $(1 - "0.647"^2)$	M1	1.1b
	RSS = 0.2560	A1 (2)	1.1b
(f)	(i) The points appear randomly scattered above and below zero giving us no reason to doubt the suitability of the linear model.	B1	3.5a
	(ii) There is a possible outlier that could be removed (and the regression line recalculated).	B1	3.5c
		(2)	
	Natos	(11	marks
a) M1: For	Notes r a complete correct method to find r		
	awrt 0.647		
	ating their answer to part (a) and a correct reason		
	use of a correct model. i.e. a correct expression for <i>b</i>		
	use of a correct model i.e. a correct expression (ft) for a		
	correct model $l = 0.00431w + 1.10$ with awrt 0.00431 and awrt 1.10		
	rrect answer using their equation and $w = 100$ or using $t = 0.00431s - 18.87a$ low awrt $1.53/1.54$	and $s = 94$	
(e) M1: for a	a correct expression for RSS		
A1: awrt			
	explaining why the model may be suitable. Allow randomly scattered around allow most residuals close to zero or not suitable as not randomly scattered around a scattered around	• •	xis.
	explaining how the fit of the model might be improved.		

Question	Scheme	Marks	AOs
4(a)	$\frac{1}{12}(a-5)^2 = \frac{27}{4}$	M1	3.1a
	$\frac{12}{(a-5)^2} = 81$		
	a-5=9 or $a-5=-9$	A1	1.1b
	\therefore since $a > 5$ $a = 14^*$	A1cso*	2.2a
		(3)	
(b)	Correct method for $E(Y)$, $E(X)$ and $E(X^2)$ or $E(Y)$ and $E(X^2 + X)$	M1	3.1a
	$E(Y) = \int_{2}^{6} \frac{1}{20} y(2y-3) dy$	M1	1.1b
	$=\frac{68}{15}$	A1	1.1b
	$E(X) = \frac{5+14}{2} \text{ or } 9.5 \text{ and } \frac{27}{4} = E(X^2) - 9.5^2$ or $\int_5^{14} \frac{x^2}{9} dx \text{ or } \int_5^{14} \left(\frac{x^3}{9} + \frac{x^2}{9}\right) dx \text{ or } 3 \int_5^{14} \left(\frac{x^3}{9} + \frac{x^2}{9}\right) dx$	M1	1.1b
	$E(X^2) = 97$ and $E(X) = 9.5$ or $E(X^2 + X) = 106.5$ or $3E(X^2 + X) = 319.5$	A1	1.1b
	$E(T) = 3 \times "97" + 3 \times "9.5" + 2 \times \frac{68}{15}$ oe	M1	1.1b
	$E(T) = \frac{9857}{30} *$	A1*cso	2.1
		(7)	
		(10	marks)
	Notes		
$\frac{a^3-125}{3(a-5)}$	slating a problem in mathematical contexts into a correct equation. Allow $-\left(\frac{a+5}{2}\right)^2 = \frac{27}{4}$		
	$a-5=9$ or $a-5=-9$ or $a^2-10a-56=0$ or $a^3-15a^2-6a+280=0$ concluding it is 14 giving a reason why -4 is rejected		
(b) M1 : For	a complete method to solve the problem		
	an attempt at E(Y)		
1.	³ / ₅ or awrt 4.53		
	an attempt at E(X) and E(X ²) or E(X ² + X) or $3E(X^2 + X)$ Some sort of we	-	be
	$\frac{1}{4} \text{ for } E(X^2) \text{ eg } \frac{27}{4} = E(X^2) - E(X)^2. \text{ Allow } Var(X) = E(X^2) - E(X)^2 \text{ leading to } = E(X^2) - E(X)^2 + E(X)^2 $	$= \mathbb{E}(X^2)$	
A1: 319. M1: Met	5 hod for finding $E(T)$ ft their values		
	Fully correct solution no errors, must have $E(T) = \frac{9857}{30} *$		

PMT

PMT