

# Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics Further Core 1 (9FM0) Paper 1

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2019 Publications Code 9FM0\_01\_1906\_MS All the material in this publication is copyright © Pearson Education Ltd 2019

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## **EDEXCEL GCE MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt[4]{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper
- The second mark is dependent on gaining the first mark

- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.
   If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

#### **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles)

#### Method mark for solving 3 term quadratic:

#### 1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$ , where |pq| = |c|, leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

#### 2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

#### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to x = ...

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

#### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### <u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question     | Scheme                                                                                                                            | Marks | AOs  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 1(a)         | z = -1 - 2i or $z = 3 + i$                                                                                                        | M1    | 1.2  |
|              | z = -1 - 2i and $z = 3 + i$                                                                                                       | A1    | 1.1b |
|              | (-1, 2) Im (3, 1)                                                                                                                 | B1    | 1.1b |
|              | (-1, -2) Re                                                                                                                       | B1    | 1.1b |
|              |                                                                                                                                   | (4)   |      |
| (b)<br>Way 1 | $ (z - (-1 + 2i))(z - (-1 - 2i)) = \dots $<br>or<br>$ (z - (3 + i))(z - (3 - i)) = \dots $ $ (z - (3 + i))(z - (3 - i)) = \dots $ | M1    | 3.1a |
|              | $z^{2}+2z+5$ or $z^{2}-6z+10$ e.g. $f(z) = (z^{2}+2z+5)()$                                                                        | A1    | 1.1b |
|              | $z^{2} + 2z + 5$ and $z^{2} - 6z + 10$ $f(z) = (z^{3} + z^{2}(-1-i) + z(-1+2i) - 15 - 5i)()$                                      | A1    | 1.1b |
|              | $f(z) = (z^2 + 2z + 5)(z^2 - 6z + 10)$ Expands the brackets to forms a quartic                                                    | M1    | 3.1a |
|              | f(z) = $z^4 - 4z^3 + 3z^2 - 10z + 50$ or<br>States $a = -4, b = 3, c = -10, d = 50$                                               | A1    | 1.1b |
|              |                                                                                                                                   | (5)   |      |

| Question | Scheme                                                                                                  | Marks | AOs    |
|----------|---------------------------------------------------------------------------------------------------------|-------|--------|
| Way 2    | sum roots = $\alpha + \beta + \gamma + \delta = (-1+2i) + (-1-2i) + (3+i) + (3-i) =$                    |       |        |
|          | pair sum = $\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta$ | -     |        |
|          | = (-1+2i)(-1-2i) + (-1+2i)(3-i) + (-1+2i)(3+i) + (-1-2i)(3-i)                                           |       |        |
|          | +(-1-2i)(3+i)+(3+i)(3-i)=                                                                               |       | 0.1    |
|          | triple sum = $\alpha\beta\gamma + \alpha\beta\delta + \beta\gamma\delta + \alpha\gamma\delta$           | M1    | 3.1a   |
|          | = (-1+2i)(-1-2i)(3-i) + (-1+2i)(-1-2i)(3+i) + (-1+2i)(3+i)(3-i)                                         |       |        |
|          | +(-1-2i)(3+i)(3-i) =                                                                                    |       |        |
|          | Product = $\alpha \beta \gamma \delta = (-1+2i)(-1-2i)(3-i)(3+i) =$                                     |       |        |
|          | sum = 4, pair sum = 3, triple sum = 10 and product = $50$                                               | A1    | 1.1b   |
|          |                                                                                                         | A1    | 1.1b   |
|          | a = -(their sum roots) = -4                                                                             |       |        |
|          | b = +(their pair sum) = 3                                                                               | M1    | 3.1a   |
|          | c = -(triple sum) = -10                                                                                 | A1    | 1.1b   |
|          | d = +(product) = 50                                                                                     |       |        |
|          |                                                                                                         | (5)   |        |
| Way 3    | f $z = -1+2i^{4}+a$ $-1+2i^{3}+b$ $-1+2i^{2}+c$ $-1+2i$ $+d=0$                                          |       | 2.1    |
|          | f $z = 3+i^{4}+a^{3}+i^{3}+b^{3}+i^{2}+c^{3}+i^{4}+d=0$                                                 | M1    | 3.1a   |
|          | Leading to                                                                                              |       |        |
|          | -7+11a-3b-c+d=0 $24-2a-4b+2c=0$                                                                         | A1    | 1.1b   |
|          | $28 + 18a + 8b + 3c + d = 0 \qquad 96 + 26a + 6b + c = 0$                                               | A1    | 1.1b   |
|          | Solves their simultaneous equation to find a value for one of the constants                             | M1    | 3.1a   |
|          | a = -4, b = 3, c = -10, d = 50                                                                          | A1    | 1.1b   |
|          |                                                                                                         | (5)   |        |
|          |                                                                                                         | (9    | marks) |

Notes

#### (a)

M1: Identifies at least one correct complex conjugate as another root (can be seen/implied by Argand diagram)

A1: Both complex conjugate roots identified correctly (can be seen/implied by Argand diagram) For the next two marks allow either a cross, dot or line drawn where the end point is labelled with the correct coordinate, corresponding complex number or clearly plotted with correct numbers labelled on the axis or indication of the correct coordinates by use of scale markers. Condone (3, i) etc. The axes do not need to be labelled with Re and Im.

B1: One complex conjugate pair correctly plotted.

B1: Both complex conjugate pair correctly plotted. The  $3\pm i$  must be closer to the real axes than the  $-1\pm 2i$ 

If there is no indication of the coordinates, scale or complex numbers on the Argand diagram this is B0 B0.

Do accept correct labelling e.g.



#### (b)

#### <u>Way 1</u>

M1: Correct strategy for forming at least one of the quadratic factors. Follow through their roots. A1: At least one correct simplified quadratic factor.

A1: Both simplified quadratic factors correct or a correct simplified cubic factor

M1: A complete strategy to find values for a, b, c and d e.g. uses their quadratic factors or cubic and linear factor to form a quartic.

A1: Correct quartic in terms of z or correct values for a, b, c and d stated.

## Way 2

M1: Correct strategy for finding at least three of the sum roots, pair sum, triple sum and product. Follow through their roots. This can be implied by at least three correct values for the sum roots, pair sum, triple sum and product with no working shown. If the calculations are not shown for the sums and product and they have at least two incorrect values this is M0.

A1: At least two correct values for the sum roots, pair sum, triple sum or product.

A1: All correct values for the sum, pair sum, triple sum and product.

M1: Must have real values of a, b, c and d and use a = -their sum roots, b = their pair sum,

c = -their triple sum and d = their product.

A1: Correct quartic in terms of z or correct values for a, b, c and d stated.

#### Way 3

M1: Substitutes two roots into f z = 0 and equates coefficients to form 4 equations

A1: At least two correct equations.

A1: All four correct equations

M1: Solve their four equation (using calculator) to find at least one value. This will need checking if incorrect equations used.

A1: Correct quartic in terms of *z* or correct values for *a*, *b*, *c* and *d* stated.

**Note:** Correct answer only will score 5/5

| Question | Scheme                                                                                                                                                                                                                                              | Marks | AOs   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 2        | $\frac{8x-12}{(2x^2+3)(x+1)} = \frac{Ax+B}{2x^2+3} + \frac{C}{x+1}$                                                                                                                                                                                 | M1    | 3.1a  |
|          | $8x - 12 = (Ax + B)(x + 1) + C(2x^{2} + 3)$<br>E.g. $x = -1 \Rightarrow C = -4, x = 0 \Rightarrow B = 0, x = 1 \Rightarrow A = 8$<br>Or<br>Compares coefficients and solves<br>(A + 2C = 0  A + B = 8  B + 3C = -12)<br>$\Rightarrow A =, B =, C =$ | dM1   | 1.1b  |
|          | A = 8  B = 0  C = -4                                                                                                                                                                                                                                | A1    | 1.1b  |
|          | $\int \left(\frac{8x}{2x^2+3} - \frac{4}{x+1}\right) dx = 2\ln(2x^2+3) - 4\ln(x+1)$                                                                                                                                                                 | A1ft  | 1.1b  |
|          | $2\ln(2x^{2}+3) - 4\ln(x+1) = \ln\left(\frac{(2x^{2}+3)^{2}}{(x+1)^{4}}\right)$<br>or<br>$2\ln(2x^{2}+3) - 4\ln(x+1) = 2\ln\left(\frac{(2x^{2}+3)}{(x+1)^{2}}\right)$                                                                               | M1    | 2.1   |
|          | $\lim_{x \to \infty} \left\{ \ln \frac{(2x^2 + 3)^2}{(x+1)^4} \right\} = \ln 4  \text{or}  \lim_{x \to \infty} \left\{ 2 \ln \frac{(2x^2 + 3)}{(x+1)^2} \right\} = 2 \ln 2$                                                                         | B1    | 2.2a  |
|          | $\Rightarrow \int_0^\infty \frac{8x-12}{(2x^2+3)(x+1)} dx = \ln\frac{4}{9}  cao$                                                                                                                                                                    | A1    | 1.1b  |
|          |                                                                                                                                                                                                                                                     | (7)   |       |
|          | Notes                                                                                                                                                                                                                                               | (7    | marks |

dM1: Full method for finding values for all three constants. Dependent on having the correct form for the partial fractions. Allow slips as long as the intention is clear.

A1: Correct constants or partial fractions.

A1ft: Integrates 
$$\int \frac{px}{2x^2+3} - \frac{q}{x+1} dx = \frac{p}{4} \ln(2x^2+3) - q \ln(x+1)$$
 and no extra terms

M1: Combines two algebraic log terms correctly.

B1: Correct upper limit for  $x \rightarrow \infty$  by recognising the dominant terms. (Simply replacing x with  $\infty$ scores B0). This can be implied.

A1: Deduces the correct value for the improper integral in the correct form, cao A0 for  $2 \ln \frac{2}{3}$ 

Correct answer with no working seen is no marks. Note: Incorrect partial fraction form,

 $\frac{A}{2x^2+3} + \frac{B}{x+1}$  or  $\frac{Ax}{2x^2+3} + \frac{B}{x+1}$  the maximum it can score is M0M0A0A0M1B1A0

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                             | Marks | AOs  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 3(a)(i)  | $2(0.4+a) = 1.2$ or $0.4+a = 0.6$ or $0.4+a\cos 0 = 0.6$<br>$\Rightarrow a =$                                                                                                                                                                                                                                                                                                      | M1    | 3.4  |
|          | $a = 0.2 * \cos \theta$                                                                                                                                                                                                                                                                                                                                                            | A1*   | 1.1b |
|          |                                                                                                                                                                                                                                                                                                                                                                                    | (2)   |      |
| (b)      | Area of rectangle is $1.2 \times 0.6 (= 0.72)$                                                                                                                                                                                                                                                                                                                                     | B1    | 1.1b |
|          | Area enclosed by curve = $\frac{1}{2} \int (0.4 + 0.2 \cos 2\theta)^2 (d\theta)$                                                                                                                                                                                                                                                                                                   | M1    | 3.1a |
|          | $(0.4+0.2\cos 2\theta)^2 = 0.16+0.16\cos 2\theta+0.04\cos^2 2\theta$ $= 0.16+0.16\cos 2\theta+0.04\left(\frac{\cos 4\theta+1}{2}\right)$                                                                                                                                                                                                                                           | M1    | 2.1  |
|          | $\frac{1}{2}\int (0.4+0.2\cos 2\theta)^2 d\theta = \frac{1}{2} \Big[ 0.18\theta + 0.08\sin 2\theta + 0.005\sin 4\theta(+c) \Big]$ $= 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta(+c) \text{ o.e.}$                                                                                                                                                                          | A1ft  | 1.1b |
|          | Area enclosed by curve = $\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{2\pi}$<br>or<br>Area enclosed by curve = $2\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{\pi}$<br>or<br>Area enclosed by curve = $4\begin{bmatrix} 0.09\theta + 0.04\sin 2\theta + 0.0025\sin 4\theta \end{bmatrix}_0^{\pi/2}$ | dM1   | 3.1a |
|          | $=\frac{9}{50}\pi$ or $0.18\pi(=0.5654)$                                                                                                                                                                                                                                                                                                                                           | A1    | 1.1b |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area of wood = $1.2 \times 0.6 - 0.18\pi$                                                                                                                                                                                                                                                                                                                                                                                                                         | M1          | 1.1b     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = awrt 0.155 (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1          | 1.1b     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (8)         |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (10         | marks)   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |  |  |
| half the length of the the the end of the the length of the the the end of t | M1: Interprets the information from the model and realises that the maximum value of <i>r</i> gives<br>half the length of the table top (or equivalent) and solves to find a value for <i>a</i> . Use<br>$\theta = 0$ and $r = 0.6$ or $\theta = \pi$ and $r = -0.6$ to find a value for <i>a</i> .<br>Using $\theta = 2\pi$ is M0<br>A1*: Correct value for <i>a</i> .<br><u>Alternative</u><br>M1: Uses $a = 0.2$ and $\theta = 0$ to find a value for <i>r</i> |             |          |  |  |
| formula with <i>r</i> substit<br>Look for $= \lambda \times \frac{1}{2} \int (0)^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y identified for finding an area enclosed by the polar curve<br>tuted. Attempt at area $=\frac{1}{2}\int (0.4+0.2\cos 2\theta)^2 d\theta =$<br>$0.4+0.2\cos 2\theta)^2 d\theta =$<br>itly seen then look at the limits and it must be either                                                                                                                                                                                                                      | using a co  | orrect   |  |  |
| $= \int_0^{\pi} ($ Condone missing d $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(0.4+0.2\cos 2\theta)^2 d\theta = \dots$ or $= 2\int_0^{\frac{\pi}{2}} (0.4+0.2\cos 2\theta)^2 d\theta =$                                                                                                                                                                                                                                                                                                                                                        |             |          |  |  |
| M1: Squares to achiev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve three terms and uses $\cos^2 2\theta = \frac{\pm 1 \pm \cos 4\theta}{2}$ to obtain an e                                                                                                                                                                                                                                                                                                                                                                        | expression  | in an    |  |  |
| integrable form.<br>A1ft: Correct follow through integration as long as the previous two method marks have been<br>awarded.<br>dM1: Dependent of first method mark. Finds the required area enclosed by the curve using the<br>correct limits.<br>There are only three cases either $\frac{1}{2} \int_{0}^{2\pi} (0.4+0.2\cos 2\theta)^2 d\theta$ or $\int_{0}^{\pi} (0.4+0.2\cos 2\theta)^2 d\theta$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\int^{2} d\theta$<br>can be implied if it gives 0 but the use of 0 must been see<br>ust writing 0 is insufficient)                                                                                                                                                                                                                                                                                                                                               | n or implie | ed if it |  |  |

PMT

A1: Correct area of the glass following fully correct working. **Do not award for the correct answer following incorrect working.** 

M1: Subtracts their area of the glass from their area of the rectangle, as long as it does not give a negative area

A1: awrt 0.155 or awrt 0.155 m<sup>2</sup> (If the units are stated they must be correct)

Note: Using a calculator to find the area scores a maximum of B1M0M0A0M0A0M1A1

| Question | Scheme                                                                                                                                                                                        | Marks | AOs    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 4        | $\frac{1}{(r+1)(r+2)(r+3)} \equiv \frac{A}{r+1} + \frac{B}{r+2} + \frac{C}{r+3} \Longrightarrow A =, B =, C =$ $\left( \text{NB } A = \frac{1}{2} \ B = -1 \ C = \frac{1}{2} \right)$         | M1    | 3.1a   |
|          | $r = 0 \qquad \frac{1}{2} \left[ \frac{1}{1} - \frac{2}{2} + \frac{1}{3} \right] \text{ or } \frac{1}{21} - \frac{1}{2} + \frac{1}{23} \text{ or } \frac{1}{2} - \frac{1}{2} + \frac{1}{6}$   |       |        |
|          | $r = 1 \qquad \frac{1}{2} \left[ \frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right] \text{ or } \frac{1}{2 2} - \frac{1}{3} + \frac{1}{2 4} \text{ or } \frac{1}{4} - \frac{1}{3} + \frac{1}{8}$ | -     |        |
|          | $r = n-1 \qquad \frac{1}{2} \left[ \frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \right] \text{ or } \frac{1}{2 n} - \frac{1}{n+1} + \frac{1}{2 n+2}$                                           |       |        |
|          | or $\frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2n+4}$                                                                                                                                            | M1    | 2.1    |
|          | $\frac{1}{2} \left[ \frac{1}{n+1} - \frac{2}{n+2} + \frac{1}{n+3} \right] \text{ or } \frac{1}{2 n+1} - \frac{1}{n+2} + \frac{1}{2 n+3}$                                                      |       |        |
|          | $r = n$ or $\frac{1}{2n+2} - \frac{1}{n+2} + \frac{1}{2n+6}$                                                                                                                                  |       |        |
|          | $\frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{1}{2(n+2)} - \frac{1}{n+2} + \frac{1}{2(n+3)}$                                                                                               | Al    | 1.1b   |
|          | or $\frac{1}{4} - \frac{1}{2(n+2)} + \frac{1}{2(n+3)}$                                                                                                                                        |       |        |
|          | $=\frac{n^2+5n+6+2n+6-4n-12+2n+4}{4(n+2)(n+3)}$                                                                                                                                               | M1    | 1.1b   |
|          | $=\frac{(n+1)(n+4)}{4(n+2)(n+3)}$                                                                                                                                                             | A1    | 2.2a   |
|          |                                                                                                                                                                                               | (5)   |        |
|          |                                                                                                                                                                                               | (5    | marks) |

Notes

M1: A complete strategy to find *A*, *B* and *C* e.g. partial fractions. Allow slip when finding the constant but must be the correct form of partial fractions and correct identity. M1: Starts the process of differences to identify the relevant fractions at the start and end. Must have attempted a minimum of r=0, r=1, ... r=n-1 and r=nFollow through on their values of *A*, *B* and C. Look for  $r=0 \rightarrow \frac{A}{1} - \frac{B}{2} + \frac{C}{3}$   $r=1 \rightarrow \frac{A}{2} - \frac{B}{3} + \frac{C}{4}$   $r=n-1 \rightarrow \frac{A}{n} - \frac{B}{n+1} + \frac{C}{n+2}$   $r=n \rightarrow \frac{A}{n+1} - \frac{B}{n+2} + \frac{C}{n+3}$ A1: Correct fractions from the beginning and end that do not cancel stated. M1 Combines all 'their' fractions (at least two algebraic fractions) over their correct common denominator, does not need to be the lowest common denominator (allow a slip in the numerator).

A1: Correct answer.

Note: if they start with r = 1 the maximum they can score is M1M0A0M1A0 Note: Proof by induction gains no marks

| Question | Scheme                                                                                                                                                                                               | Marks | AOs  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 5(a)     | The tank initially contains 100L. 3 L are entering every minute and 2 L are leaving every minute so overall 1 L increase in volume each minute so the tank contains $100 + t$ litres after t minutes | M1    | 3.3  |
|          | 2 L leave the tank each minute and if there are Sg of salt in the tank, the concentration will be $\frac{S}{100+t}g/L$ so salt leaves the tank at a rate of $2 \times \frac{S}{100+t}g$ per minute   | M1    | 3.3  |
|          | Salt enters the tank at a rate of $3 \times 1g$ per minute                                                                                                                                           | B1    | 2.2a |
|          | $\therefore \frac{\mathrm{d}S}{\mathrm{d}t} = 3 - \frac{2S}{100 + t} * \mathrm{cso}$                                                                                                                 | A1*   | 1.1b |
|          |                                                                                                                                                                                                      | (4)   |      |
| (b)      | $\frac{\mathrm{d}S}{\mathrm{d}t} + \frac{2S}{100+t} = 3$                                                                                                                                             |       |      |
|          | $I = e^{\int \frac{2}{100+t} dt} = (100+t)^2 \Longrightarrow S(100+t)^2 = \int 3(100+t)^2 dt$                                                                                                        | M1    | 3.1b |
|          | $S(100+t)^{2} = (100+t)^{3}(+c)$<br>OR<br>$S(100+t)^{2} = 30\ 000t + 300t^{2} + t^{3}(+c)$                                                                                                           | A1    | 1.1b |
|          | $t = 0, \ S = 0 \Longrightarrow c = -10^6$                                                                                                                                                           | M1    | 3.4  |
|          | $t = 10 \Longrightarrow S = 100 + 10 - \frac{10^6}{(100 + 10)^2}$                                                                                                                                    | dM1   | 1.1b |

PMT

|                                                       | OB                                                                                                                                                                                                                                                                                                                                                                                |     |        |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|                                                       | OR<br>$S(100+10)^2 = (100+10)^3 (+c) \Longrightarrow S =$                                                                                                                                                                                                                                                                                                                         |     |        |
|                                                       | $S(100+10)^{2} = (100+10)^{3}(+c) \Rightarrow S =$<br>= awrt 27 (g) or $\frac{3310}{121}$ (g)                                                                                                                                                                                                                                                                                     | A1  | 2.2b   |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                   | (5) |        |
| (c)                                                   | Concentration is $\left(100 + t - \frac{10^6}{(100 + t)^2}\right) \div (100 + t) = 0.9$                                                                                                                                                                                                                                                                                           |     |        |
|                                                       | OR<br>$S = 0.9 \ 100 + t \Rightarrow 0.9 \ 100 + t = 100 + t - \frac{10^6}{100 + 10^2}$                                                                                                                                                                                                                                                                                           | M1  | 3.4    |
|                                                       | OR                                                                                                                                                                                                                                                                                                                                                                                |     |        |
|                                                       | $S = 0.9  100 + t  \Rightarrow 0.9  100 + t^{-3} =  100 + t^{-3} - 10^{6}$                                                                                                                                                                                                                                                                                                        |     |        |
|                                                       | $(100+t)^3 = 10^7 \Longrightarrow t = \dots$                                                                                                                                                                                                                                                                                                                                      |     |        |
|                                                       | OR                                                                                                                                                                                                                                                                                                                                                                                | dM1 | 1.1b   |
|                                                       | $t^3 + 300t^2 + 30\ 000t - 9\ 000\ 000 = 0 \Rightarrow t = \dots$                                                                                                                                                                                                                                                                                                                 |     |        |
|                                                       | t = awrt 115 (minutes)                                                                                                                                                                                                                                                                                                                                                            | A1  | 2.2b   |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                   | (3) |        |
| ( <b>d</b> )                                          | <ul> <li>E.g.</li> <li>It is unlikely that mixing is instantaneous</li> <li>The model will only be valid when the tank is not full</li> <li>When the valve is closed, the model is not valid</li> <li>It is unlikely that the concentration of salt water entering the tank remains exactly the same</li> </ul>                                                                   | B1  | 3.5a   |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                   | (1) |        |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                   | (13 | marks) |
|                                                       | Notes                                                                                                                                                                                                                                                                                                                                                                             |     |        |
| M1: A sui<br>There nee<br>e.g. the co<br>e.g. salt or | table explanation for the "100 + t" e.g. as a minimum $(v) = 100 + 3t - 2$<br>table explanation for the $\frac{2S}{100 + t}$<br>d to be some explanation (words) for this part of the formula.<br>encentration of (salt) = $\frac{S}{100 + t}$ therefore (salt) out = $2 \times \frac{S}{100 + t} = \frac{2S}{100 + t}$<br>at = $\frac{2S}{volume of water} = \frac{2S}{100 + t}$ |     | ⊢t     |
|                                                       | for $2 \times \frac{S}{100+t} = \frac{2S}{100+t}$ only with no explanation<br>ct interpretation for the "3" e.g. salt in = 3 or $\frac{dS}{dt}$ in = 3                                                                                                                                                                                                                            |     |        |
|                                                       | dt                                                                                                                                                                                                                                                                                                                                                                                |     |        |
| <u>Note:</u> Salt                                     | t water in = 3 is $\mathbf{B0}$                                                                                                                                                                                                                                                                                                                                                   |     |        |

A1\*: Puts all the components together to form the given differential equation cso (b)

M1: Uses the model to find the integrating factor and attempts the solution of the differential

equation. Look for  $I.F. = e^{\int \frac{2}{100+t} dt} \Longrightarrow S \times \text{'their } I.F. = \int 3 \times \text{'their } I.F. \text{'} dt$ 

A1: Correct solution condone missing + c

For the next three mark there must be a constant of integration

M1: Interprets the initial conditions, t = 0 S = 0, and uses in their equation to find the constant of integration.

dM1: Dependent on having a constant of integration. Uses their solution to the problem to find the amount of salt after 10 minutes.

A1: Awrt 27 or  $\frac{3310}{121}$ . (If the units are stated they must be correct)

**<u>Note</u>:** If achieves  $S(100+t)^2 = 30\ 000t + 300t^2 + t^3 + c$  the constant of integration c = 0 and the

correct amount of salt can be achieved. If there is no + c the maximum they can score is M1A1M0M0A0

#### Notes continued

(c)

**Note:** Look out for setting S = 0.9 in this part, which scores no marks.

M1: Uses their solution to the model and divides by 100 + t as an interpretation of the concentration and sets = 0.9.

Alternatively recognises that the amount of salt = 0.9(100 + t) and substitutes for S in their solution to the model.

dM1: Dependent on previous method mark. Solves their equation to obtain a value for t. May use a calculator.

A1: Awrt 115 (If the units are stated they must be correct) or 1hr 45 mins with units (d)

B1: Evaluates the model by making a suitable comment – see scheme for examples.

| Question | Scheme                                                                                                 | Marks | AOs  |
|----------|--------------------------------------------------------------------------------------------------------|-------|------|
| 6        | $\underline{\mathbf{Way 1}} \mathbf{f}(k+1) - \mathbf{f}(k)$                                           |       |      |
|          | When $n = 1$ , $3^{2n+4} - 2^{2n} = 729 - 4 = 725$<br>(725=145×5) so the statement is true for $n = 1$ | B1    | 2.2a |
|          | Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5                                       | M1    | 2.4  |
|          | $f(k+1)-f(k) = 3^{2k+6} - 2^{2k+2} - 3^{2k+4} + 2^{2k}$                                                | M1    | 2.1  |
|          | either 8f $k + 5 \times 2^{2k}$ or 3f $k + 5 \times 3^{2k+4}$                                          | A1    | 1.1b |
|          | f $k+1 = 9f k + 5 \times 2^{2k}$ or f $k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.                            | A1    | 1.1b |
|          | If true for $n = k$ then it is true for                                                                | A1    | 2.4  |

|                                                                                                                                                                                                                                                                                                                                                | 1        |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| $\frac{n = k + 1}{(\text{positive integers}) n}$ (Allow 'for all values')                                                                                                                                                                                                                                                                      |          |              |
| (positive integers) <i>n</i> . (Anow for an values )                                                                                                                                                                                                                                                                                           |          |              |
|                                                                                                                                                                                                                                                                                                                                                | (6)      |              |
| $\underline{\mathbf{Way 2}} f(k+1)$                                                                                                                                                                                                                                                                                                            |          |              |
| When $n = 1$ , $3^{2n+4} - 2^{2n} = 729 - 4 = 725$<br>(725 = 145×5) so the statement is true for $n = 1$                                                                                                                                                                                                                                       | B1       | 2.2a         |
| Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5                                                                                                                                                                                                                                                                               | M1       | 2.4          |
| $f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} (= 3^{2k+6} - 2^{2k+2})$                                                                                                                                                                                                                                                                                   | M1       | 2.1          |
| f $k+1 = 9f k + 5 \times 2^{2k}$ or f $k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.                                                                                                                                                                                                                                                                    | A1<br>A1 | 1.1b<br>1.1b |
| If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$ , the statement is true for all(positive integers) $\underline{n}$ . (Allow 'for all values')                                                                                                                                                    | A1       | 2.4          |
|                                                                                                                                                                                                                                                                                                                                                | (6)      |              |
| $\underline{\mathbf{Way 3}} \mathbf{f}(k) = 5M$                                                                                                                                                                                                                                                                                                |          |              |
| When $n = 1$ , $3^{2n+4} - 2^{2n} = 729 - 4 = 725$<br>(725=145×5) so the statement is true for $n = 1$                                                                                                                                                                                                                                         | B1       | 2.2a         |
| Assume true for $n = k$ so $3^{2k+4} - 2^{2k} = 5M$                                                                                                                                                                                                                                                                                            | M1       | 2.4          |
| $f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} (= 3^{2k+6} - 2^{2k+2})$                                                                                                                                                                                                                                                                                   | M1       | 2.1          |
| $\begin{pmatrix} f(k+1) = 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k} = 3^2 \times (5M + 2^{2k+2}) - 2^2 \times 2^{2k} \\ f(k+1) = 45M + 5 \times 2^{2k} \text{ o.e.} \\ OR \\ (f(k+1) = 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k} = 3^2 \times 3^{2k+4} - 2^2 \times (3^{2k+4} - 5M)) \\ f(k+1) = 5 \times 3^{2k+4} + 20M \text{ o.e.} \end{cases}$ | A1<br>A1 | 1.1b<br>1.1b |
| If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$ , the statement is true for all(positive integers) $\underline{n}$ . (Allow 'for all values')                                                                                                                                                    | A1       | 2.4          |
|                                                                                                                                                                                                                                                                                                                                                | (6)      |              |
| <br>$\underline{\mathbf{Way 4}} \mathbf{f}(k+1) + \mathbf{f}(k)$                                                                                                                                                                                                                                                                               |          |              |
| When $n = 1$ , $3^{2n+4} - 2^{2n} = 729 - 4 = 725$<br>(725=145×5) so the statement is true for $n = 1$                                                                                                                                                                                                                                         | B1       | 2.2a         |
| <br>Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5                                                                                                                                                                                                                                                                           | M1       | 2.4          |
| $f(k+1) + f(k) = 3^{2k+6} - 2^{2k+2} + 3^{2k+4} - 2^{2k}$                                                                                                                                                                                                                                                                                      | M1       | 2.1          |
| $f(k+1) + f(k) = 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k} + 3^{2k+4} - 2^{2k}$                                                                                                                                                                                                                                                              | A1       | 1.1b         |

|                                                                                                                                                                                 | (6  | marks) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|                                                                                                                                                                                 | (6) |        |
| If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$ , the statement is true for all(positive integers) $n$ . (Allow 'for all values') | A1  | 2.4    |
| f $k+1 = 9 - M' \times 3^{2k+4} - 4 - M' \times 2^{2k} + M' f k$ o.e.                                                                                                           | A1  | 1.1b   |
| f $k+1$ -'M'f $k = 9-$ 'M' $\times 3^{2k+4} - 4-$ 'M' $\times 2^{2k}$                                                                                                           | A1  | 1.1b   |
| $f(k+1) - 'M'f(k) = 3^{2k+6} - 2^{2k+2} - 'M' \times 3^{2k+4} + 'M' \times 2^{2k}$                                                                                              | M1  | 2.1    |
| Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5                                                                                                                | M1  | 2.4    |
| When $n = 1$ , $3^{2n+4} - 2^{2n} = 729 - 4 = 725$<br>(725=145×5) so the statement is true for $n = 1$                                                                          | B1  | 2.2a   |
| $\frac{\text{Way 5}}{(\text{Selecting a value of M that will lead to multiples of 5})}$                                                                                         |     |        |
|                                                                                                                                                                                 | (6) |        |
| If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$ , the statement is true for all(positive integers) $n$ . (Allow 'for all values') | A1  | 2.4    |
| f $k+1 = 5[2 \times 3^{2k+4} - 2^{2k}] - f(k)$ o.e.                                                                                                                             | A1  | 1.1b   |
| leading to $10 \times 3^{2k+4} - 5 \times 2^{2k}$                                                                                                                               |     |        |

Notes

<u>Way 1</u> f(k+1) - f(k)

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1

M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then n = k.

n = k then ... etc

M1: Attempts f(k+1) - f(k) or equivalent work

A1: Achieves a correct simplified expression for f(k+1) - f(k)

A1: Achieves a correct expression for f(k+1) in terms of f(k)

A1: Correct complete conclusion. This mark is dependent on **all** previous marks. It is gained by conveying the ideas of **all** underlined points either at the end of their solution **or** as a narrative in their solution.

#### **Way 2** f(k+1)

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1.

M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for)

n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ... etc

M1: Attempts f(k+1)

A1: Correctly achieves either 9f k or  $5 \times 2^{2k}$  or either 4f k or  $5 \times 3^{2k+4}$ 

A1: Achieves a correct expression for f(k+1) in terms of f(k)

A1: Correct complete conclusion. This mark is dependent on **all** previous marks. It is gained by conveying the ideas of **all** underlined points either at the end of their solution **or** as a narrative in their solution.

## $\underline{\mathbf{Way 3}} \mathbf{f}(k) = 5M$

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1.

M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for)

n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for

n = k then ... etc

M1: Attempts f(k+1)

A1: Correctly achieves either 45*M* or  $5 \times 2^{2k}$  or either 20*M* or  $5 \times 3^{2k+4}$ 

A1: Achieves a correct expression for f(k+1) in terms of M and  $2^{2k}$  or M and  $3^{2k+4}$ 

A1: Correct complete conclusion. This mark is dependent on **all** previous marks. It is gained by conveying the ideas of **all** underlined points either at the end of their solution **or** as a narrative in their solution.

 $\underline{\mathbf{Way 4}} \mathbf{f}(k+1) + \mathbf{f}(k)$ 

B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1

M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ...etc

M1: Attempts f(k+1) + f(k) or equivalent work

A1: Achieves a correct simplified expression for f(k+1) + f(k)

A1: Achieves a correct expression for f  $k+1 = 5 \left[2 \times 3^{2k+4} - 2^{2k}\right] - f(k)$ 

A1: Correct complete conclusion. This mark is dependent on **all** previous marks. It is gained by conveying the ideas of **all** underlined points either at the end of their solution **or** as a narrative in their solution.

#### Notes continued

<u>Way 5</u> f(k+1) - Mf(k) (Selects a suitable value for M which leads to divisibility of 5) B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1

M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for)

n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ...etc

M1: Attempts f(k+1) - Mf(k) or equivalent work

A1: Achieves a correct simplified expression, f k+1 –'M'f k which is divisible by 5

f k+1 -'Mf k = 9-'M'  $\times 3^{2k+4} - 4-$ 'M'  $\times 2^{2k}$ 

A1: Achieves a correct expression for f  $k+1 = 9-'M' \times 3^{2k+4} - 4-'M' \times 2^{2k} + 'M'f k$  which is divisible by 5

A1: Correct complete conclusion. This mark is dependent on **all** previous marks. It is gained by conveying the ideas of **all** underlined points either at the end of their solution **or** as a narrative in their solution.

| Question                                                      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | AOs  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 7(a)<br>Way 1                                                 | $1+2\lambda = 1+t$<br>$-1-\lambda = -t$<br>$4+3\lambda = 3+2t$<br>$\implies t = \dots \text{ or } \lambda = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1    | 3.1a |
|                                                               | Checks the third equation with $t = 2$ and $\lambda = 1$<br>Or shows that the coordinate (3, -2, 7) lies on both lines                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1    | 1.1b |
|                                                               | As the lines intersect at a point the lines lie in the same plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al    | 2.4  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |      |
| (a)<br>Way 2                                                  | $1 = 1 + 2\lambda + t$ $-1 = -\lambda - t$ $4 = 3 + 3\lambda + 2t$ $\Rightarrow t = \dots \text{ or } \lambda = \dots$ $1 = 1 + 2\lambda + t$ $0 = -1 - \lambda - t$ $3 = 4 + 3\lambda + 2t$ $\Rightarrow t = \dots \text{ or } \lambda = \dots$                                                                                                                                                                                                                                                                                                           | M1    | 3.1a |
|                                                               | Checks the third equation withChecks the third equation with $t = 2$ and $\lambda = -1$ $t = -2$ and $\lambda = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al    | 1.1b |
|                                                               | Second coordinates lie on the plane; therefore, the lines lie on the same plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1    | 2.4  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |      |
| (a)<br>Way 3                                                  | x = 1+t,  y = -t,  z = 3+2t<br>$\frac{1+t-1}{2} = \frac{-t+1}{-1} = \frac{3+2t-4}{3}$<br>Solves a pair of equations $t =$                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1    | 3.1a |
|                                                               | Solve two pairs of equations to find $t = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1    | 1.1b |
|                                                               | As the lines intersect at a point the lines lie in the same plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al    | 2.4  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |      |
| (a)<br>Way 4<br>(Using<br>Further<br>Pure 2<br>knowled<br>ge) | $\begin{pmatrix} 2\\-1\\3 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} \Rightarrow 2x - y + 3z = 0 \text{ and } \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} \Rightarrow x - y + 2z = 0$<br>attempts to solve the equations to find a normal vector<br>OR<br>attempts the cross product $\begin{pmatrix} 2\\-1\\3 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = \dots$<br><b>AND</b><br>either finds the equation of one plane <b>OR</b> finds dot product between<br>the normal and one coordinate | M1    | 3.1a |

|              | $\mathbf{r} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \mathbf{or} \mathbf{r} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = $ |           |             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
|              | $\mathbf{r} \cdot \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \dots \text{ or } \mathbf{r} \cdot \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |
|              | $\mathbf{OR} \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |
|              | Achieves the correct planes containing <b>each</b> line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             |
|              | $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = -2 \text{ or } x - y - z = -2 \text{ o.e.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |
|              | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1        | 1.1b        |
|              | Shows that $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = -2$ and $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = -2$ o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |             |
|              | Both planes are the same, therefore the lines lie in the same plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1        | 2.4         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)       |             |
| (b)          | e.g. $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |
|              | or $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} + p \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} + p \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + q \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1        | 2.5         |
|              | or $\mathbf{r} \mathbf{k} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |
|              | or $\mathbf{r} \cdot k \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = -2k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |
|              | $\begin{bmatrix} -1 \\ -1 \end{bmatrix} = -2\kappa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)       |             |
| (c)<br>Way 1 | $\begin{pmatrix} 2\\-1\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = 2+1+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)<br>M1 | 1.1b        |
|              | $\binom{2}{-1} \cdot \binom{1}{-1} = 2 + 1 + 6$ $\sqrt{2^2 + (-1)^2 + 3^2} \cdot \sqrt{1^2 + (-1)^2 + 2^2} \cos \theta = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 1.1b<br>2.1 |
|              | $\begin{pmatrix} 2\\-1\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = 2+1+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1        |             |



#### <u>Way 1</u>

M1: Starts by attempting to find where the two lines intersect. They must set up a parametric equation for line 1 (allow sign slips and as long as the intention is clear), forms simultaneous equations by equating coordinates and attempts to solve to find a value for t = ... or  $\lambda = ...$  A1: Shows that there is a unique solution by checking the third equation or shows that the coordinate (3, -2, 7) lies on both lines.

A1: Achieves the correct values t = 2 and  $\lambda = 1$ , checks the third equation and concludes that either

- a common point,
- the lines intersect
- the equations are consistent

therefore, the lines lie in the same plane

#### Way 2

M1: Finds the vector equation of the plane with the both direction vectors and one coordinate (allow a sign slip), sets equal to the other coordinate, forms simultaneous equations and attempts to solve to find a value for t = ... or  $\lambda = ...$ 

A1: Shows that the other coordinate lies on the plane by checking the third equation. A1: Achieves the correct values t = -2 and  $\lambda = 1$  or t = 2 and  $\lambda = -1$  and concludes that the second coordinate lie on the plane; therefore, the lines lie on the same plane

#### Way 3

M1: Substitutes line 2 into line 1 and solves a pair of equations to find a value for t. Allow slip with the position of 0 and sign slips as long as the intention is clear.

PMT

A1: Solve two pairs of equations to achieve t = 2 for each. A1: Achieves the correct value t = 2 and concludes that either a common point, the lines intersect • the equations are consistent • therefore, the lines lie in the same plane Way 4 (Using Further Pure 2 knowledge) M1: A complete method to finds a vector which is normal to both lines and attempts to finds the equation of the plane containing one line. A1: Achieves the correct equation for the plane containing each line. A1: Conclusion, planes are the same, therefore the lines lie in the same plane. (b) This may be seen in part (a) B1: Correct vector equation allow any letter for the scalers. Must start with  $\mathbf{r} = \dots$  and uses two out of the following direction vectors  $\pm \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ ,  $\pm \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$  or  $\pm \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \text{ and one of the following position vectors} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$ (c) Way 1 M1: Calculates the scalar product between the direction vectors, allow one slip, if the intention is clear dM1: Dependent on the previous method mark. Applies the scalar product formula with their scalar product to find a value for  $\cos\theta$ A1: Correct answer only Way 2 (Using Further Pure 2 knowledge) M1: Calculates the vector product between the direction vectors, allow one slip, if the intention is clear dM1: Dependent on the previous method mark. Applies the vector product formula with their vector product to find a value for  $\sin\theta$ A1: Correct answer only

| Question     | Scheme                                                                                                                                                                                                                                                                              | Marks | AOs  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 8(a)         | $\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} = \frac{5}{2} \left( \frac{\mathrm{d}w}{\mathrm{d}t} - \frac{\mathrm{d}s}{\mathrm{d}t} \right) \text{ or } \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}t} - \frac{2}{5} \frac{\mathrm{d}^2 w}{\mathrm{d}t^2} \text{ o.e.}$ | B1    | 1.1b |
|              | $\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}t} - \frac{2}{5}\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} \Longrightarrow \frac{\mathrm{d}w}{\mathrm{d}t} - \frac{2}{5}\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} = \frac{2}{5}w - 90\mathrm{e}^{-t}$                          | M1    | 2.1  |
|              | $2\frac{d^2w}{dt^2} - 5\frac{dw}{dt} + 2w = 450e^{-t} *$                                                                                                                                                                                                                            | A1*   | 1.1b |
|              |                                                                                                                                                                                                                                                                                     | (3)   |      |
| <b>(b</b> )  | $2m^2 - 5m + 2 = 0 \Longrightarrow m = \dots$                                                                                                                                                                                                                                       | M1    | 3.4  |
|              | $m = 2, \frac{1}{2}$                                                                                                                                                                                                                                                                | A1    | 1.1b |
|              | $(w) = A e^{\alpha t} + B e^{\beta t}$                                                                                                                                                                                                                                              | M1    | 3.4  |
|              | $(w) = Ae^{0.5t} + Be^{2t}$                                                                                                                                                                                                                                                         | A1    | 1.1b |
|              | PI: Try $w = ke^{-t} \Rightarrow \frac{dw}{dt} = -ke^{-t} \Rightarrow \frac{d^2w}{dt^2} = ke^{-t}$<br>$2ke^{-t} + 5ke^{-t} + 2ke^{-t} = 450e^{-t} \Rightarrow k =$                                                                                                                  | M1    | 3.4  |
| -            | w = 'their C.F.' + 50e <sup>-t</sup><br>(w = Ae <sup>0.5t</sup> + Be <sup>2t</sup> + 50e <sup>-t</sup> )                                                                                                                                                                            | A1ft  | 1.1b |
| -            |                                                                                                                                                                                                                                                                                     | (6)   |      |
| (c)          | $s = w - \frac{2}{5} \frac{\mathrm{d}w}{\mathrm{d}t} = A \mathrm{e}^{0.5t} + B \mathrm{e}^{2t} + 50 \mathrm{e}^{-t} - \frac{2}{5} \left( \frac{A}{2} \mathrm{e}^{0.5t} + 2B \mathrm{e}^{2t} - 50 \mathrm{e}^{-t} \right)$                                                           | M1    | 3.4  |
|              | $s = \frac{4A}{5}e^{0.5t} + \frac{B}{5}e^{2t} + 70e^{-t}$                                                                                                                                                                                                                           | A1    | 1.1b |
|              |                                                                                                                                                                                                                                                                                     | (2)   |      |
| ( <b>d</b> ) | $65 = A + B + 50, \ 85 = \frac{4A}{5} + \frac{B}{5} + 70 \Longrightarrow A =, B =$ $(\text{NB } A = 20 \ B = -5)$                                                                                                                                                                   | M1    | 3.3  |
| -            | $w = 0 \Longrightarrow 20e^{0.5t} - 5e^{2t} + 50e^{-t} = 0$                                                                                                                                                                                                                         | dM1   | 1.1b |
| -            | $e^{3t} - 4e^{1.5t} - 10(=0)$ or a multiple                                                                                                                                                                                                                                         | A1    | 3.1a |
| -            | $e^{1.5t} = \frac{4 \pm \sqrt{4^2 - 4 \times (1)(-10)}}{2}$                                                                                                                                                                                                                         | M1    | 1.1b |
|              | $1.5t = \ln\left(\frac{4 + \sqrt{56}}{2}\right)$                                                                                                                                                                                                                                    | M1    | 2.3  |
|              | $T = \frac{2}{3}\ln\left(\frac{4+\sqrt{56}}{2}\right) = \text{awrt } 1.165$                                                                                                                                                                                                         | A1    | 3.2a |
|              |                                                                                                                                                                                                                                                                                     | (6)   |      |

| (e)               | E.g.                                                                                                                                                            |                 |           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
|                   | <ul> <li>Either population becomes negative which is not possible</li> <li>When the white-clawed crayfish have died out, the model will not be valid</li> </ul> | B1              | 3.5b      |
|                   | will not be valid                                                                                                                                               | (1)             |           |
|                   |                                                                                                                                                                 | (1              | 8 marks)  |
|                   | Notes                                                                                                                                                           | (-              |           |
| (a)               |                                                                                                                                                                 |                 |           |
|                   | rentiates the first equation with respect to <i>t</i> correctly.                                                                                                |                 |           |
| M1: Subst         | itutes $\frac{ds}{dt}$ into their derivative.                                                                                                                   |                 |           |
|                   | eves the printed answer with no errors.                                                                                                                         |                 |           |
| (b) Note•         | All the mark except the final A1 are available if they use other vari                                                                                           | ables.          |           |
|                   | the model to form and solve the Auxiliary Equation.                                                                                                             |                 |           |
|                   | ct roots of the AE.                                                                                                                                             |                 |           |
| M1: Uses roots)   | the model to form the Complementary Function for their roots (they ma                                                                                           | ay be con       | nplex     |
| A1: Corre         | ct CF                                                                                                                                                           |                 |           |
| M1: Choo          | ses the correct form of the PI according to the model and uses a comple                                                                                         |                 |           |
| the PI. Us        | ses $w = ke^{-t}$ finds both $\frac{dw}{dt}$ and $\frac{d^2w}{dt^2}$ substitutes into the differential equat                                                    | ion and f       | ind the   |
| value of <i>k</i> |                                                                                                                                                                 |                 |           |
| 1                 | endent on all three of the previous method marks. Following through of $=$ 'their CF' + 50e <sup>-t</sup>                                                       | n their Cl      | Fonly     |
| (-)               |                                                                                                                                                                 |                 |           |
| (c)<br>M1: Subst  | titutes into the first equation the answer for part (b) in place of w and th                                                                                    | e derivati      | ve of     |
|                   | n place of $\frac{dw}{dt}$ . If they rearrange to make S the subject first and make a                                                                           |                 |           |
|                   | s for w and $\frac{dw}{dt}$ allow this mark.                                                                                                                    |                 |           |
|                   | dt<br>ct simplified equation.                                                                                                                                   |                 |           |
| (d)               |                                                                                                                                                                 |                 |           |
|                   | the initial conditions $t = 0$ , $w = 65$ and $s = 85$ to form simulations equa                                                                                 | tions and       | solves to |
|                   | alues of their constants                                                                                                                                        |                 |           |
| -                 | endent on the previous method mark. Sets $w = 0$                                                                                                                | 0 154           | T. 1      |
|                   | sses the indices correctly to obtain a 3-term quadratic equation in terms $a_{1}$ all be an one side and condene missing $= 0$ .                                | of $e^{1.5t}$ . | lt does   |
|                   | to all be on one side and condone missing = 0.<br>their three-term quadratic (3TQ) to reach $e^{pt} = q$                                                        |                 |           |
|                   | ect use of logarithms to reach $pt = \ln q$ where $q > 0$ and rejects the other                                                                                 | r solution      |           |
| A1: awrt          |                                                                                                                                                                 |                 |           |

**Note:** the final 3 marks only can be implied by a correct answer following the correct 3-term quadratic equation in terms of  $e^{1.5t}$ 

(e)

B1: Suggests a suitable limitation of the model, not valid when negative population Any mention of other factors such as does not take into account e.g. other predictors, fishing, disease, lack of food etc is B0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom