P Pearson Edexcel

Mark Scheme (Results)
Summer 2019

Pearson Edexcel GCE In A level Further Mathematics
Paper 9FM0/4B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 9FMO_4B_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

1(a)		Mean $=504$	B1	1.1b
		1.96	B1	3.3
		$504 \pm \frac{5.4}{\sqrt{8}} \times 11.96 "$	M1	2.1
		(500.258, 507.742)	A1	1.1 b
			(4)	
(b)		$\mathbf{5 0 5}$ is in the confidence interval therefore there is evidence that the machine is working properly	B1ft	2.2b
			(1)	
(c)		5\% oe	B1	1.1b
			(1)	
(d)		s needs to be used instead of σ and a t-value instead of the z value	B1	3.3
		since the sample is small therefore you can't use the normal distribution	B1	3.5b
			(2)	
(8 marks)				
Notes:				
(a)	B1	504 may be seen in part(b)		
	B1	For realising a normal distribution must be used as a model and finding the correct value 1.96		
	M1	For $504 \pm \frac{5.4}{\sqrt{8}} \times " z$ value $" .\|z\|>1$ May be implied by a correct CI		
	A1	awrt 500.26 and 507.74 NB using t gives 500.29 and 507.71		
(b)	B1ft	Drawing a correct inference (ft) using their answer to part (a) and the 505 from the question. Reason must be given. Ignore incorrect non - contextual		
(c)	B1	5\%		
(d)	B1	create new model by using s and t. Allow if state use CI $\mu \pm \frac{s}{\sqrt{n}} \times " t$ " or use $s=4.44$ and $t=2.365$		
	B1	For recognising that the sample is small		

2(a)		$S_{w w}=13447-\frac{303^{2}}{8}=1970.875$		
		$r=\frac{269.5}{\sqrt{42 \times 1970.875}}$	M1	1.1b
		$r=0.9367 \ldots$ awrt 0.937	A1	1.1b
			(2)	
(b)		As the amount of fertiliser increases the yield increases	B1	3.2a
			(1)	
(c)		$b=\frac{269.5}{42}[=6.41666 \ldots]$	M1	3.3
		$a=\frac{303}{8}-b^{\prime} \cdot \frac{28}{8}[=15.41666 \ldots]$	M1	1.1b
		$w=15.4+6.42 f$	A1	1.1 b
			(3)	
(d)		3.21 tonnes	B1ft	1.1b
			(1)	
(e)		The residual plot is close to an ' n ' shape or the residuals appear not to be randomly scattered	M1	2.4
		The model in part(c) is unlikely to be suitable	A1	2.2 b
			(2)	
(f)		Fit a curve rather than a line	B1	3.5c
			(1)	
(10 marks)				
Notes:				
(a)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Complete correct method for finding r for awrt 0.937		
(b)	B1	Correct contextual statement		
(c)	M1	For use of a correct model ie a correct expression for b		
	M1	For use of a correct model ie a correct expression (ft) for a		
	A1	For a correct model $w=15.4+6.42 f$ with awrt 15.4 and awrt 6.42		
(d)	B1ft	awrt 3.21 condone - 3.21		
(e)	M1	Explaining a reason for their conclusion eg there is a pattern/trend in the residuals Do not accept residuals not close to zero		
	A1	concluding it is not valid oe		
(f)	B1	A comment about not using a linear line eg use a quadratic model, logarithmic graph exponential		

Question		Scheme	Marks	AOs
4(a)		$k\left(2^{3}-\frac{3}{8} 2^{4}\right)=1$	B1*	1.1b
		$2 k=1$		
		$k=\frac{1}{2} *$		
		Or $\frac{1}{2}\left(2^{3}-\frac{3}{8} 2^{4}\right)=1 \quad \therefore k=\frac{1}{2} *$	(B1*)	
			(1)	
(b)		$\mathrm{f}(x)=k\left[3 x^{2}-\frac{3}{2} x^{3}\right]$	M1	2.1
		(i) $\int_{0}^{2} x \mathrm{f}(x) \mathrm{d} x=k \int_{0}^{2}\left(3 x^{3}-\frac{3}{2} x^{4}\right) \mathrm{d} x$	M1d	1.1b
		$=\left[\frac{3 x^{4}}{8}-\frac{3 x^{5}}{20}\right]_{0}^{2}$		
		$=\frac{6}{5}$ or 1.2	A1	1.1b
		(ii) $3 x-\frac{9 x^{2}}{4}=0$	M1d	3.1a
		$x\left(3-\frac{9 x}{4}\right)=0$	M1d	1.1b
		$x=0$ or $\frac{4}{3} \quad \therefore$ mode $=\frac{4}{3}$	A1	1.1b
			(6)	
(c)		Mode > mean implies it is negative skew	B1ft	2.4
			(1)	
(8 marks)				
Notes:				
(a)	B1*	substituting $x=2$ into $\mathrm{F}(x)$ and equating to 1 leading to $k=\frac{1}{2}$ with no errors. Minimum subst seen is $k(8-6)=1$ or $0.5(8-6)=1$		
(b)	M1	Realising they need to find the pdf and attempting to differentiate $k\left[x^{3}-\frac{3}{8} x^{4}\right]$ at least 1 correct term		
(i)	M1d	dep on $1^{\text {st }}$ M1 Attempting to find $\int_{0}^{2} x($ their $\mathrm{f}(x)) \mathrm{d} x$ At least one correct term ft their pdf		
	A1	$\frac{6}{5}$ or $1.2 \mathrm{oe} \quad$ NB 1.2 with no working		
(ii)	M1d	dep on $1^{\text {st }} \mathrm{M} 1$ for realising they need to differentiate their pdf. At least one correct term but ft their pdf		
	M1d	Dep on $3^{\text {rd }} \mathrm{M} 1$. correct method for solving their differential of their $\mathrm{pdf}=0 \mathrm{pdf}$ must be of the form $a x^{2}+b x$		
	A1	\therefore mode $=\frac{4}{3}$ only. They must eliminate 0		
(c)	B1ft	ft their mode and mean or a correct sketch.		

Question	Scheme	Marks	AOs
5	$d: 6 \begin{array}{llllllll}6 & -6 & 12 & 6 & -4 & 1 & 7 & 14\end{array}$	M1	3.1b
	$\bar{d}= \pm 4.5 \quad s_{\mathrm{d}}=\sqrt{50.285 \ldots}=7.09 \ldots$	M1	1.1b
	$\mathrm{H}_{0}: \mu_{\mathrm{d}}=0 \quad \mathrm{H}_{1}: \mu_{\mathrm{d}} \neq 0$	B1	3.3
	$t= \pm \frac{\text { "4.5" } \sqrt{8}}{77.09 \ldots "}$ oe	M1	1.1b
	$= \pm 1.7948 \ldots . \quad$ awrt $\pm 1.79 / 1.8$	A1	1.1b
	Critical value $t_{7}= \pm 3.499$	B1	1.1b
	There is insufficient evidence that the papers are of a different level of difficulty or Alexa's belief is correct	A1ft	2.2b
		(7)	
(7 marks)			
Notes:			
M1: for realising that the model to use is the paired t-test and finding the differences (\pm) At least 3 correct			
M1: correct method for finding \bar{d} and s_{d}.			
B1: Using a correct model for difference and both hypotheses correct using the notation μ_{d} or μ Condone $\mu_{I}=\mu_{I I}$ and $\mu_{I} \neq \mu_{I I}$			
M1: Using the correct method to find test statistics ie $t= \pm \frac{" \text { their } 4.5 " \sqrt{8}}{\text { "their } 7.09 \ldots . "}$			
A1: awrt1.79 or 1.8			
B1: for correct critical value $t= \pm 3.499$ with compatible sign			
A1ft: Drawing a correct inference in context using their CV and their value of t			
NB difference of means test gets M0M0B1M0A0B0A0			

Question	Scheme	Marks	AOs
7(a)	Let $T=W-2 X \quad$ then $\mathrm{E}(T)=2.5-2 \times 1.27$	M1	3.3
	$=-0.04$	A1	1.1b
	$\operatorname{Var}(T)=0.7^{2}+2^{2} \times 0.4^{2}$	M1	2.1
	$=1.13$	A1	1.1b
	$\mathrm{P}\left(Z>\frac{0-"-0.04 "}{\sqrt{11.13 "}}\right)=\mathrm{P}(Z>0.0376 \ldots)$	M1	2.1
	$=$ awrt 0.484/0.485	A1	1.1b
		(6)	
(b)	$B=W_{1}+W_{2}+\ldots+W_{n}+X_{1}+X_{2}+\ldots+X_{2 n}$	M1	3.3
	$\mathrm{E}(B)=5.04 n$	B1	1.1b
	$\operatorname{Var}(B)=n \times 0.7^{2}+2 n \times 0.4^{2}$		
	$=0.81 n$	A1	1.1b
	$\pm \frac{252-" 5.04 n "}{\sqrt{" 0.81 n "}}$	M1	1.1b
	$\frac{252-" 5.04 n "}{\sqrt{" 0.81 n "}}=0.8$	M1	2.1
	$5.04 n+0.72 \sqrt{n}-252=0 \quad$ oe		
	$\sqrt{n}=-7.14 \ldots$ or 7	M1	1.1b
	$n=7^{2}$	M1	1.1 b
	$=49$	A1cso	1.1b
		(8)	
(14 marks)			

Notes:

(a) M1: selecting and using an appropriate model. ie $\pm(W-2 X)$ May be implied by -0.04

A1: -0.04 oe
M1: for realising the need to use $\operatorname{Var}(W)+4 \operatorname{Var}(X)$. Allow use of 0.7 for $\operatorname{Var}(W)$ instead of 0.7^{2} and/or 0.4 for $\operatorname{Var}(X)$ instead of 0.4^{2}. May be implied by 1.13
A1: 1.13 only
M1: For realising the $\mathrm{P}(T>0)$ is required and an attempt to find it. $\frac{0-\text { "their }-0.04 \text { " }}{\sqrt{\text { "their } 1.13 "}}$ may be implied by a correct answer. If $\mathrm{E}(T)$ and $\operatorname{Var}(T)$ have not been given they must be correct here A1: awrt 0.484/0.485
(b)M1: Selecting and using appropriate model. May be implied by 0.81

B1: $5.04 n$ only
A1: $0.81 n$
M1: For standardising using their mean and sd $\pm \frac{252-" 5.04 n "}{\sqrt{" 0.81 n "}}$ If mean and sd not given they must be correct here
M1: For constructing an equation and equate their standardisation to 0.8 or awrt 0.7998 . Must be of form $\frac{252-a n}{b \sqrt{n}}=0.8$ or $\frac{252-a n}{b n}=0.8$
M1: Correctly solving their 3 term quadratic equation. Condone $n=7$
M1: for realising the need to square their answer or for attempting to square their quadratic equation
A1cso: 49 only

Questi	Scheme	Marks	AOs
8(a)	$\mathrm{H}_{0}: \rho_{s}=0 \quad \mathrm{H}_{1}: \rho_{s}>0$	B1	2.5
	$\mathrm{CV}=0.6$	B1	1.1b
	$r_{s}=0.85$ does lie in the critical region	M1	2.1
	There is evidence to suggest that there is a relationship between the position in the 100 m sprint and the position in the long jump.	A1	2.2b
		(4)	
(b)	$1-\frac{6 \sum d^{2}}{9(80)}=0.85$	M1	3.1b
	$\sum d^{2}=18$	A1	1.1b
	$\sum d^{2}$ needed is ' 18 '-15 $=3$	M1	1.1b
	Since $\sum d^{2}=3$ for the 3 missing places each place must contribute 1, therefore B must be in position 5 or 7 . However, 5 has already been used so they must be position 7	A1	2.2a
	C is $6^{\text {th }}$ and D is $8^{\text {th }}$	A1	2.2a
	SC B7, C6, D8 with no reasons B1 marks as final A1 on epen		
		(5)	
(c)	The $\sum d^{2}$ will not change but the value of n will decrease therefore	M1	2.4
	Spearman's rank correlation will decrease	A1	2.2a
		(2)	
	Notes: (11 marks)		
(a)B1: Both hypotheses correct written using the notation ρ			
B1: awrt 0.6			
M1: Drawing a correct inference using their CV and the value of r_{s}			
A1: Drawing a correct inference in context using their CV and the value of r_{s}			
(b)M1: For realising they need to equate $1-\frac{6 \sum d^{2}}{9(80)}$ to 0.85 to enable them to find the $\sum d^{2}$			
A1: 18			
M1: for $\sum d^{2}=3$			
A1: For using the information in the question with the value for $\sum d^{2}$ to deduce that each must contribute 1 to the $\sum d^{2}$ and explain why B must be in position 7			
A1: C $6^{\text {th }}$ D $8^{\text {th }}$			
(c)M1: Complete explanation why it decreases			
A1: using the information given to deduce that it decreases			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

