

Pearson Edexcel Level 3 GCE

Wednesday 13 May 2020

\author{

Morning (Time: 2 hours)	Paper Reference 8MA0/01

}

Mathematics

Advanced Subsidiary

Paper 1: Pure Mathematics

You must have:

Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 14 questions in this question paper. The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Pearson

PhysicsAndMathsTutor.com

1. A curve has equation

$$
y=2 x^{3}-4 x+5
$$

Find the equation of the tangent to the curve at the point $P(2,13)$.
Write your answer in the form $y=m x+c$, where m and c are integers to be found.
Solutions relying on calculator technology are not acceptable.
tangent: same gradient, same coordinate, one point of intersection \leftrightarrow one root differentiate $y(x): y=2 x^{3}-4 x+5 \Rightarrow \frac{d y}{d x}=3 \times 2 x^{(3-11}-4 x^{(1-0)}$

$$
=6 x^{2}-4
$$

so gradient @ $P=6(2)^{2}-4=20$
use $y-y_{0}=m\left(x-x_{0}\right): y-13=20(x-2)$

$$
\begin{aligned}
y-13 & =20 x-40 \\
y & =20 x-27
\end{aligned}
$$

Question 1 continued

PhysicsAndMathsTutor.com
2. [In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]

A coastguard station O monitors the movements of a small boat.
At 10:00 the boat is at the point $(4 \mathbf{i}-2 \mathbf{j}) \mathrm{km}$ relative to O.
At 12:45 the boat is at the point $(-3 \mathbf{i}-5 \mathbf{j}) \mathrm{km}$ relative to O.
The motion of the boat is modelled as that of a particle moving in a straight line at constant speed.
(a) Calculate the bearing on which the boat is moving, giving your answer in degrees to one decimal place.
(b) Calculate the speed of the boat, giving your answer in kmh^{-1}

$$
\text { angle needed: } \begin{aligned}
\tan \theta & =\frac{7}{3} \\
& =66.801^{\circ}
\end{aligned}
$$

total bearing $=180^{\circ}+66.8^{\circ}=246.8^{\circ}$

Question 2 continued
b) to find speed, need distance travelled direction vector $\binom{-7}{-3}$ so distance $=\sqrt{7^{2}+3^{2}}=\sqrt{58} \mathrm{~km}$ time: 2 hrs $45 \Rightarrow 2.75$ hours
speed $=\frac{\sqrt{58}}{2.75}=2.77 \mathrm{kmh}^{-1}$

$$
\sqrt{(4--3)^{2}+(-2+5)^{2}}
$$

PhysicsAndMathsTutor.com
3.

In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
(i) Solve the equation

$$
x \sqrt{2}-\sqrt{18}=x
$$

writing the answer as a surd in simplest form.
(ii) Solve the equation

$$
\begin{equation*}
4^{3 x-2}=\frac{1}{2 \sqrt{2}} \tag{3}
\end{equation*}
$$

i. rearrange to make x the subject:

$$
\begin{array}{r}
x \sqrt{2}-x=\sqrt{18} \\
x(\sqrt{2}-1)=\sqrt{18} \\
x=\frac{\sqrt{18}}{\sqrt{2}-1}
\end{array}
$$

surd in denominator \Rightarrow rationalise: $x=\frac{\sqrt{18}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$

$$
\begin{aligned}
& =\frac{\sqrt{18}(\sqrt{2}+1)}{2-1} \\
& =\frac{\sqrt{36}+\sqrt{18}}{1} \\
& =6+\sqrt{9 \times 2} \\
& =6+3 \sqrt{2}
\end{aligned}
$$

Question 3 continued
ii. LHS has a power of 2 . RHS has power of $2 \Rightarrow$ manipulate so

2 is 'base' of each side: $\left(2^{2}\right)^{3 x-2}=\frac{1}{2 \times 2^{\frac{1}{2}}}$

$$
\rightarrow 2^{6 x-4}=\frac{1}{2^{\frac{3}{2}}}=2^{-\frac{3}{2}}
$$

$$
\begin{aligned}
\therefore 6 x-4 & =-\frac{3}{2} \\
6 x & =2 \cdot 5=\frac{5}{2} \\
x & =\frac{5}{12}
\end{aligned}
$$

PhysicsAndMathsTutor.com
4. In 1997 the average CO_{2} emissions of new cars in the UK was $190 \mathrm{~g} / \mathrm{km}$. In 2005 the average CO_{2} emissions of new cars in the UK had fallen to $169 \mathrm{~g} / \mathrm{km}$.

Given $\mathrm{Ag} / \mathrm{km}$ is the average CO_{2} emissions of new cars in the UK n years after 1997 and using a linear model,
(a) form an equation linking A with n.

In 2016 the average CO_{2} emissions of new cars in the UK was $120 \mathrm{~g} / \mathrm{km}$.
(b) Comment on the suitability of your model in light of this information.
a) linear model: form $A=m n+c$
\checkmark function of number of years
\qquad
\rightarrow so we want equation of dotted line gradient: $\frac{190-169}{-8}=-2.625$
intercept: $190=c$
so $A=-2.625 n+190$
b) given new data point, we need to see how it compares with model's prediction:

PhysicsAndMathsTutor.com

Question 4 continued

$$
\begin{aligned}
A & =-2.625 \times 19+190 \\
& =140.125 \mathrm{~g} / \mathrm{km}
\end{aligned}
$$

$140 \cdot 125>120 \Rightarrow$ the model overestimates $A \& 50$ is not
suitable
5.

Figure 1
Figure 1 shows the design for a structure used to support a roof.
The structure consists of four steel beams, $A B, B D, B C$ and $A D$.
Given $A B=12 \mathrm{~m}, B C=B D=7 \mathrm{~m}$ and angle $B A C=27^{\circ}$
(a) find, to one decimal place, the size of angle $A C B$.

The steel beams can only be bought in whole metre lengths.
(b) Find the minimum length of steel that needs to be bought to make the complete structure.
a) use sine rule: $\frac{\sin a}{A}=\frac{\sin b}{B} \leftarrow$ ratio of sine of angle \& opposite side

$$
\begin{aligned}
\therefore \frac{\sin a}{12} & =\frac{\sin 27^{\circ}}{7} \\
a & =\sin ^{-1}\left(\frac{12 \sin 27^{\circ}}{7}\right)
\end{aligned}
$$

$$
=51.1^{\circ} \text { (primary) or } 180-51.1=128 \cdot 9^{\circ} \text { (secondary) }
$$

a is obtuse $\Rightarrow a=128.9^{\circ}$
b) use cosine rule to find $A D$: $a^{2}=b^{2}+c^{2}-2 b c \cos A$ $\triangle D C B=180^{\circ}-128.9^{\circ}=511^{\circ}$
$\triangle D C B$ is isosceles $\therefore \angle C B D=180-2 \times 51.1^{\circ}=77.8^{\circ}$

Question 5 continued

$$
\begin{aligned}
& \triangle C B A=180^{\circ}-27^{\circ}-128.9^{\circ}=24.1^{\circ} \\
& \therefore \angle A B D=24.1^{\circ}+77.8^{\circ}=101.9^{\circ}
\end{aligned}
$$

(check: $\angle A B D=180^{\circ}-27^{\circ}-51.1^{\circ}=101.9^{\circ}$)

$$
\begin{aligned}
\Rightarrow A D^{2} & =7^{2}+12^{2}-2 \times 12 \times 7 \cos 101.9^{\circ} \\
& =227.64
\end{aligned}
$$

$$
\therefore A D=15.088 \mathrm{~m}
$$

total length $=12+7+7+15.09$

$$
=41.09
$$

round up to whole metres: 42 m bought

PhysicsAndMathsTutor.com
6. (a) Find the first 4 terms, in ascending powers of x, in the binomial expansion of

$$
(1+k x)^{10}
$$

where k is a non-zero constant. Write each coefficient as simply as possible.

Given that in the expansion of $(1+k x)^{10}$ the coefficient x^{3} is 3 times the coefficient of x,
(b) find the possible values of k.
a) use binomial formula: $(x+y)^{n}=\sum_{0}^{n}\binom{n}{k} x^{k} y^{n-k}$

$$
(1+k x)^{10}=\sum_{0}^{10}\binom{10}{t}(k x)^{t} \times 1^{10-t}=1+\underbrace{\binom{10}{1}(k x)^{1}+\binom{10}{2}(k x)^{2}+\binom{10}{3}}_{1^{s+} 4 \text { terms }}(k x)^{3})^{3}
$$

\qquad

$$
=1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3}
$$

b) x^{3} clef. $=3 \times x$ coif.

$$
\begin{aligned}
120 k^{3} & =3 \times 10 k \\
& =30 k \\
k \neq 0 \Rightarrow \text { divide by } k: 120 k^{2} & =30 \\
k^{2} & =\frac{1}{4} \\
\therefore k & = \pm \frac{1}{2}
\end{aligned}
$$

Question 6 continued

PhysicsAndMathsTutor.com
7. Given that k is a positive constant and $\int_{1}^{k}\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=4$
(a) show that $3 k+5 \sqrt{k}-12=0$
(b) Hence, using algebra, find any values of k such that

$$
\text { a) } \begin{align*}
\int_{1}^{k}\left(\frac{5}{2} x^{-\frac{1}{2}}+3\right) d x & =\left[\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=4\right. \\
& \left.=\left[\left(\frac{1}{2}+1\right)\right) x^{-\frac{1}{2}+1}+\frac{3}{1} x^{x^{\prime}}\right]_{1}^{k} \tag{4}\\
& \left.=\left[\frac{5}{2} \div \frac{1}{2}\right) x^{\frac{1}{2}}+3 x\right]_{1}^{k} \\
& =\left[5 x^{\frac{1}{2}}+3 x\right]_{1}^{k} \\
& =5 \sqrt{k}+3 k-5-3 \\
\Rightarrow \quad 4 & =5 \sqrt{k}+3 k-8 \\
0 & =5 \sqrt{k}+3 k-12
\end{align*}
$$

b) use $x=\sqrt{k}: 3 x^{2}+5 x-12=0$

$$
\begin{aligned}
& (3 x-4)(x+3)=0 \\
\Rightarrow & x=\sqrt{k}=\frac{4}{3} \text { or } \sqrt{k}=-3
\end{aligned}
$$

reject negative root so $k=\frac{16}{9}$

$$
\begin{aligned}
\rightarrow \int_{1}^{9}\left(\frac{5}{2} x^{-\frac{1}{2}}+3\right) d x & =[5 \sqrt{x}+3 x]_{1}^{9} \\
& =5(3)+3(9)-5-3 \\
& =34 \neq \text { takes tee root } \\
& =34
\end{aligned}
$$

Question 7 continued
8. The temperature, $\theta^{\circ} \mathrm{C}$, of a cup of tea t minutes after it was placed on a table in a room, is modelled by the equation

$$
\theta=18+65 \mathrm{e}^{-\frac{t}{8}} \quad t \geqslant 0
$$

Find, according to the model,
(a) the temperature of the cup of tea when it was placed on the table,
(b) the value of t, to one decimal place, when the temperature of the cup of tea was $35^{\circ} \mathrm{C}$.
(c) Explain why, according to this model, the temperature of the cup of tea could not fall to $15^{\circ} \mathrm{C}$.

Figure 2
The temperature, $\mu^{\circ} \mathrm{C}$, of a second cup of tea t minutes after it was placed on a table in a different room, is modelled by the equation

$$
\mu=A+B \mathrm{e}^{-\frac{t}{8}} \quad t \geqslant 0
$$

where A and B are constants.
Figure 2 shows a sketch of μ against t with two data points that lie on the curve.
The line l, also shown on Figure 2, is the asymptote to the curve.
Using the equation of this model and the information given in Figure 2
(d) find an equation for the asymptote l.
a) placed on table $@ t=0: \theta=18+65 e^{\circ}$

Question 8 continued
b)

$$
\begin{aligned}
\theta & =35=18+65 e^{-\frac{t}{8}} \\
& \Rightarrow 65 e^{-\frac{t}{8}}=17 \\
& \Rightarrow e^{-\frac{t}{8}}=\frac{17}{65}
\end{aligned}
$$

take \ln of both sides: $-\frac{t}{8}=\ln \left(\frac{17}{65}\right)$

$$
\begin{aligned}
t & =-8 \ln \left(\frac{17}{65}\right) \\
& =10.729 \ldots \\
& =10.7 \text { (1 d.p.) }
\end{aligned}
$$

c) as $t \rightarrow \infty . e^{-\frac{t}{8}} \rightarrow 0$ from above so $\theta \rightarrow 18^{\circ}$ from above.
hence, the minimum temperature $\left(18^{\circ}\right)$ is $>15^{\circ} \mathrm{C}$
d) $\mu=A+B e^{-\frac{t}{8}}$
given points $(0,94) \&(8,50): 94=A+B_{-8}^{0} \Rightarrow A+B=94$ (1)

$$
50=A+B^{-\frac{8}{8}} \Rightarrow A+B e^{-1}=50
$$

(1)-(2): $94-50=B\left(1-e^{-1}\right)$

$$
\begin{aligned}
44 & =B\left(1-e^{-1}\right) \\
44 e & =B(e-1) \\
B & =\frac{44 e}{(e-1)}
\end{aligned}
$$

PhysicsAndMathsTutor.com

Question 8 continued

$$
\begin{aligned}
A+B=94 \Rightarrow A & =94-\frac{44 e}{(e-11} \\
& =\frac{94 e-44 e-94}{e-1} \\
& =\frac{50 e-94}{e-1}
\end{aligned}
$$

as $t \rightarrow \infty, B e^{-\frac{t}{b}} \rightarrow 0$ so asymptote given by

$$
A=\frac{50 e-94}{e-1}(=\ell)
$$

Question 8 continued
9.

Figure 3
Figure 3 shows part of the curve with equation $y=3 \cos x^{\circ}$.
The point $P(c, d)$ is a minimum point on the curve with c being the smallest negative value of x at which a minimum occurs.
(a) State the value of c and the value of d.
(b) State the coordinates of the point to which P is mapped by the transformation which transforms the curve with equation $y=3 \cos x^{\circ}$ to the curve with equation
(i) $y=3 \cos \left(\frac{x^{\circ}}{4}\right)$
(ii) $y=3 \cos (x-36)^{\circ}$
(c) Solve, for $450^{\circ} \leqslant \theta<720^{\circ}$,

$$
3 \cos \theta=8 \tan \theta
$$

giving your solution to one decimal place.
In part (c) you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.

Question 9 continued
a) minimum of $\cos x=-1 \Rightarrow$ minimum of $3 \cos x=-3=d$ P is the first minimum for $x<0 \therefore c=-180^{\circ}$

$$
P\left(-180^{\circ},-3\right)
$$

b) i. $y=3 \cos \left(\frac{x^{\circ}}{4}\right) \rightarrow x^{\prime}$ 'stretched' $\times 4$, no change to y

$$
\rightarrow\left(-720^{\circ},-3\right)
$$

ii. $y=3 \cos \left(x-36^{\circ}\right) \Rightarrow$ translation in x-direction $+36^{\circ}$

$$
\longrightarrow\left(-144^{\circ},-3\right)
$$

c) When solving these types of question, list the relevant trig. identities that could help you.

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta}, \sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \\
& \begin{aligned}
3 \cos \theta & =8 \tan \theta \\
& =8 \frac{\sin \theta}{\cos \theta}
\end{aligned}
\end{aligned}
$$

$x \cos \theta: 3 \cos ^{2} \theta=8 \sin \theta$
form quadratic in $\sin \theta$ you want an equation with only
one trig. function)

$$
3\left(1-\sin ^{2} \theta\right)=8 \sin \theta
$$

Question 9 continued

$$
\begin{aligned}
& 3 \sin ^{2} \theta+8 \sin \theta-3=0 \\
& (3 \sin \theta-1)(\sin \theta+3)=0 \\
& \sin \theta \neq-3 \text { so } \sin \theta=\frac{1}{3}^{\circ}
\end{aligned}
$$

always note what

$$
\theta=19.47^{\circ}
$$

but range is $450^{\circ} \leq \theta<720^{\circ}$

$$
\begin{aligned}
\theta & =180-19.47^{\circ} \\
& =160.53^{\circ}
\end{aligned}
$$

$$
\downarrow \quad 360^{\circ}
$$

to bring into range: $160.53^{\circ}+360^{\circ}=520.5^{\circ}$ (1d.p.)
$19.47^{\circ}+360^{\circ}$ also not in range

Question 9 continued

PhysicsAndMathsTutor.com
10.

$$
\mathrm{g}(x)=2 x^{3}+x^{2}-41 x-70
$$

(a) Use the factor theorem to show that $\mathrm{g}(x)$ is divisible by $(x-5)$.
(b) Hence, showing all your working, write $\mathrm{g}(x)$ as a product of three linear factors.

The finite region R is bounded by the curve with equation $y=\mathrm{g}(x)$ and the x-axis, and lies below the x-axis.
(c) Find, using algebraic integration, the exact value of the area of R.
a) factor theorem: if $f(x)$ is divisible by $(x-a)$, then

$$
\begin{aligned}
& f(a)=0 \\
& g(5)=2 \times 5^{3}+5^{2}-41 \times 5-70=250+25-205-70 \\
&=0
\end{aligned}
$$

$g(5)=0 \Rightarrow(x-5)$ is a factor, so $g(x)$ is divisible by ($x-5$)
b) divide $g(x)$ by $(x-5)$ to get a quadratic

$$
\begin{array}{r}
\frac{2 x^{2}+11 x+14}{(x-5)} \begin{array}{r}
2 x^{3}+x^{2}-41 x-70 \\
-\left(2 x^{3}-10 x^{2}\right) \\
\frac{-\left(11 x^{2}-41 x-70\right.}{14 x-70}
\end{array} \\
\frac{-(1) x)}{14 x}
\end{array}
$$

Question 10 continued

$$
\begin{aligned}
g(x) & =(x-5)\left(2 x^{2}+11 x+14\right) \\
& =(x-5)(2 x+7)(x+2)
\end{aligned}
$$

c) g's roots: $-\frac{7}{2},-2,5$
so R bound by $x=-2, x=5$

Sketch to help you find R

$$
\begin{aligned}
\int_{-2}^{5} g(x) d x & =\int_{-2}^{5}\left(2 x^{3}+x^{2}-4 \mid x-70\right) d x \\
& =\left[\frac{2}{4} x^{4}+\frac{1}{3} x^{3}-\frac{41}{2} x^{2}-70 x\right]_{-2}^{5} \\
& =\frac{1}{2}(625)+\frac{1}{3}(125)-\frac{41}{2}(25)-70(5) \\
& -\frac{1}{2}(16)-\frac{1}{3}(-8)+\frac{41}{2}(4)-70(-2) \\
& =\frac{-1525}{3}-\frac{190}{3}
\end{aligned}
$$

area $=571 \frac{2}{3}$

Question 10 continued

Question 10 continued

PhysicsAndMathsTutor.com
11. (i) A circle C_{1} has equation

$$
x^{2}+y^{2}+18 x-2 y+30=0
$$

The line l is the tangent to C_{1} at the point $P(-5,7)$.
Find an equation of l in the form $a x+b y+c=0$, where a, b and c are integers to be found.
(ii) A different circle C_{2} has equation

$$
x^{2}+y^{2}-8 x+12 y+k=0
$$

where k is a constant.
Given that C_{2} lies entirely in the 4th quadrant, find the range of possible values for k.
(4)
i. complete the square to find centre of circle $x^{2}+y^{2}+18 x-2 y+30=0$
$4(x+9)^{2}-81+(y-1)^{2}-1+30=0$
\therefore centre $(-9,1)$ (don't need radius)
we can use the fact that the radius \& tangent are $\&$ to find gradient of the tangent: $m_{r} \times m_{l}=-1$ gradient of radius joining C to P :

$$
\begin{aligned}
& \frac{7-1}{-5+9}=\frac{3}{2} \\
\therefore m_{l} & =-\frac{2}{3}
\end{aligned}
$$

u sing $y-y_{0}=m\left(x-x_{0}\right): y-7=-\frac{2}{3}(x+5)$

$$
3 y-21=-2 x-10
$$

Question 11 continued

$$
\therefore l: 2 x+3 y-11=0
$$

ii. lies in $4^{\text {th }}$ quadrant \Rightarrow need centre of C_{2}

$$
\begin{aligned}
& x^{2}+y^{2}-8 x+12 y+k=0 \\
& \rightarrow(x-4)^{2}-16+(y+6)^{2}-36+k=0 \\
& \rightarrow(x-4)^{2}+(y+6)^{2}=52-k
\end{aligned}
$$

centre $(4,-6)$
to lie entirely in one quadrant, can't cross axes
\Rightarrow radius must be less than shortest distance from axes

$$
\begin{array}{r}
\therefore r<4 \Rightarrow 52-k<4^{2} \\
\therefore k>36
\end{array}
$$

$$
r>0 \Rightarrow 52-k>0
$$

so in total, $36<k<52$

Question 11 continued

Question 11 continued

PhysicsAndMathsTutor.com
12. An advertising agency is monitoring the number of views of an online advert.

The equation

$$
\log _{10} V=0.072 t+2.379 \quad 1 \leqslant t \leqslant 30, t \in \mathbb{N}
$$

is used to model the total number of views of the advert, V, in the first t days after the advert went live.
(a) Show that $V=a b^{t}$ where a and b are constants to be found.

Give the value of a to the nearest whole number and give the value of b to 3 significant figures.
(b) Interpret, with reference to the model, the value of $a b$.

Using this model, calculate
(c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.
a) $\log _{10} V=0.072 t+2.379$
raise both sides: $V=10^{0.072 t+2.379} \quad($ base $=10)$

$$
\begin{aligned}
& =10^{0.072 t} \times 10^{2.379} \\
\therefore a=10^{2.379} \& b & =10^{0.072}
\end{aligned}
$$

by calculator, nearest whole value: $a=239, b=1.18$ (3s.f.) $\Rightarrow V=239 \times 1.18^{t}$
b) we get $V=a b$ when $t=1: V=a b^{\prime}$. thus, the value of $a b$ is the total number of views of the ad. I day after it went live
c) $t=20: \quad V=239 \times 1.18^{20}$

$$
=6545 \ldots
$$

PhysicsAndMathsTutor.com

Question 12 continued
$\Rightarrow V=6500$ views

Question 12 continued

Question 12 continued
13. (a) Prove that for all positive values of a and b

$$
\frac{4 a}{b}+\frac{b}{a} \geqslant 4
$$

(b) Prove, by counter example, that this is not true for all values of a and b.
a) for all real numbers, their value squared is always ≥ 0

$$
\frac{4 a}{b}+\frac{b}{a}=4 \Rightarrow 4 a^{2}+b^{2}-4 a b=0 \Rightarrow(2 a-b)^{2}=0
$$

$$
\text { b }{ }^{\text {you can 'reverse engineer' }}
$$

to find how to prove statement

$$
\begin{aligned}
\therefore & (2 a-b)^{2} \geqslant 0 \\
& 4 a^{2}+b^{2}-4 a b \geqslant 0
\end{aligned}
$$

as $a, b>0$, dividing by either doesn't change direction of inequality: $\frac{4 a^{2}}{a b}+\frac{b^{2}}{a b} \geqslant \frac{4 a b}{a b}$

$$
\Rightarrow \frac{4 a}{b}+\frac{b}{a} \geq 4
$$

(a) Uses $a, b>0$
b) so counter example must use negative value

$$
\text { e.g. } a=5, b=-1: \frac{4 a}{b}+\frac{b}{a}=-20-\frac{1}{5}<4
$$

Question 13 continued

PhysicsAndMathsTutor.com
14. A curve has equation $y=\mathrm{g}(x)$.

Given that

- $\mathrm{g}(x)$ is a cubic expression in which the coefficient of x^{3} is equal to the coefficient of x
- the curve with equation $y=\mathrm{g}(x)$ passes through the origin
- the curve with equation $y=\mathrm{g}(x)$ has a stationary point at $(2,9)$
(a) find $\mathrm{g}(x)$,
(b) prove that the stationary point at $(2,9)$ is a maximum.
-tick off properties as you go to keep track
a) cubic: $g(x)=a x^{3}+b x^{2}+c x+d$

$$
x^{3} \text { coeff: }=x \text { coeff } \Rightarrow g(x)=\underline{a} x^{3}+b x^{2}+\underline{a} x+d
$$

passes through origin $\Rightarrow d=0, g(x)=a x^{3}+b x^{2}+a x$ passes through $(2,9) \Rightarrow 9=8 a+4 b+2 a$

$$
\Rightarrow 10 a+4 b=9
$$

$(2,9)$ is a stationary point $\Rightarrow g^{\prime}(2)=0$

$$
\begin{aligned}
& g^{\prime}(x)=3 a x^{2}+2 b x+a \\
\Rightarrow & 0=12 a+4 b+a
\end{aligned}
$$

$$
13 a+4 b=0
$$

(2) - (1): $3 a=-9$

$$
\begin{aligned}
a & =-3 \\
\Rightarrow b & =\frac{9+10(3)}{4} \\
& =\frac{39}{4}
\end{aligned}
$$

Question 14 continued
so $g(x)=-3 x^{3}+\frac{39}{4} x^{2}-3 x$
b) for a maximum, $g^{\prime \prime}(x)<0$

$$
\begin{aligned}
& g^{\prime \prime}(x)=2 \times 3 \times-3 x+2 \times \frac{39}{4} \\
&=-18 x+\frac{39}{2} \\
& g^{\prime \prime}(2)=-18(2)+\frac{39}{2} \\
&=-\frac{33}{2}<0 \text { hence point is a max. }
\end{aligned}
$$

Question 14 continued

