Pearson Edexcel

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE Further Mathematics AdvancedSubsidiarey in Further Core Pure Paper 8FM0_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 8FMO_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS
 General Instructions for Marking

1. The total number of marks for the paper is 80 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response.
If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Notes:

(a)

M1: Finds the determinant of the matrix corresponding to the system of equations.
A1: Sets determinant $=0$ and solves their 3TQ to achieve $k=2$ ($k=-8$ must be rejected)
(a) Special case

M1A0: Uses $k=2$ and finds the determinant of the matrix corresponding to the system of equations Shows that determinant $=0$ and concludes that when $k=2$ there is no unique solution
(b)

M1: A complete method eliminating one variable from the equations using two different pairs of equations. Condone if a different value of k is used
A1: Achieves two equations in the same two variables
A1: Must give a reason, shows that the equations are a linear multiple of each other therefore they are consistent.
(b) Alternative

M1: A complete method eliminating one variable from the equations using two different pairs of equations. Substitutes these equations into one of the original equations in three variables.
A1: Achieves two correct equations in two different variables
A1: Shows that the equation works therefore they are consistent.
(c)

B1: The three planes form a sheaf. They must have full marks in (b) to award this mark.

Question	Scheme	Marks	AOs
2(a)	$\left\|z_{1}\right\|=\sqrt{13}$ and $\arg z_{1}=\tan ^{-1}\left(\frac{3}{2}\right)$	B1	1.1b
	$\mathrm{z}_{1}=\sqrt{13}(\cos 0.9828+\mathrm{i} \sin 0.9828)$	B1ft	1.1b
		(2)	
(b)	A complete method to find the modulus of z_{2} e.g. $\left\|z_{1}\right\|=\sqrt{13} \text { and uses }\left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\| \times\left\|z_{2}\right\|=39 \sqrt{2} \Rightarrow\left\|z_{2}\right\|=3 \sqrt{26} \text { or } \sqrt{234}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	A complete method to find the argument of z_{2} e.g. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{\pi}{4} \Rightarrow \arg \left(z_{2}\right)=\ldots$ $\arg \left(z_{2}\right)=\frac{\pi}{4}-\tan ^{-1}\left(\frac{3}{2}\right)$ or $\frac{\pi}{4}-0.9828$ or $-0.1974 \ldots$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	$\begin{aligned} & z_{2}=3 \sqrt{26}\left(\cos \left('^{\prime}-0.1974 \ldots{ }^{\prime}\right)+\mathrm{i} \sin \left({ }^{\prime}-0.1974 \ldots\right.\right. \\ & \quad \text { or } \\ & \left.z_{2}=a+b \mathrm{i} \Rightarrow a^{2}+b^{2}=234{\text { and } \tan ^{-1}(-0.1974)}^{\prime}\right)=\frac{b}{a} \Rightarrow \frac{b}{a}=-0.2 \\ & \Rightarrow a=\ldots \text { and } b=\ldots \end{aligned}$	ddM1	1.1b
	Deduces that $z_{2}=15-3 i$ only	A1	2.2a
	Alternative $z_{1} z_{2}=(a+b i)(2+3 \mathrm{i})=(2 a-3 b)+(3 a+2 b) \mathrm{i}$		
	$\begin{aligned} & (2 a-3 b)^{2}+(3 a+2 b)^{2}=(39 \sqrt{2})^{2} \text { or } 3042 \\ & \Rightarrow a^{2}+b^{2}=234 \end{aligned}$ or $\begin{aligned} & \left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\| \times\left\|z_{2}\right\|=39 \sqrt{2} \Rightarrow\left\|z_{2}\right\|=3 \sqrt{26} \text { or } \sqrt{234} \\ & \Rightarrow a^{2}+b^{2}=234 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	$\begin{aligned} & \arg [(2 a-3 b)+(3 a+2 b) \mathrm{i}]=\frac{\pi}{4} \Rightarrow \tan ^{-1}\left(\frac{3 a+2 b}{2 a-3 b}\right)=\frac{\pi}{4} \Rightarrow \frac{3 a+2 b}{2 a-3 b}=1 \\ & \Rightarrow a=-5 b \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	Solves $a=-5 b$ and $a^{2}+b^{2}=234$ to find values for a and b	ddM1	1.1b
	Deduces that $z_{2}=15-3 i$ only	A1	2.2 a
		(6)	
(8 marks)			

Notes:

(a)

B1: Correct exact value for $\left|z_{1}\right|=\sqrt{13}$ and $\arg z_{1}=\tan ^{-1}\left(\frac{3}{2}\right)$. The value for $\arg z_{1}$ can be implied by sight of awrt 0.98 or awrt 56.3°
B1ft: Follow through on $r=\left|z_{1}\right|$ and $\theta=\arg z_{1}$ and writes $z_{1}=r(\cos \theta+i \sin \theta)$ where r is exact and θ is correct to 4 s.f. do not follow through on rounding errors.
(b)

M1: A complete method to find the modulus of z_{2}
A1: $\left|z_{2}\right|=3 \sqrt{26}$
M1: A complete method to find the argument of z_{2}
A1: $\arg \left(z_{2}\right)=\frac{\pi}{4}-\tan ^{-1}\left(\frac{3}{2}\right)$ or $\frac{\pi}{4}-0.9828$ or $-0.1974 \ldots$
ddM1: Writes z_{2} in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, dependent on both previous M marks.
Alternative forms two equations involving a and b using the modulus and argument of z_{2} and solve to find values for a and b
A1: Deduces that $z_{2}=15-3 i$ only
(b) Alternative: $z_{1} z_{2}=(a+b i)(2+3 i)=(2 a-3 b)+(3 a+2 b) \mathrm{i}$

M1: A complete method to find an equation involving a and b using the modulus
A1: Correct simplified equation $a^{2}+b^{2}=234$ o.e.
M1: A complete method to find an equation involving a and b using the argument.
Note $\tan ^{-1}\left(\frac{2 a-3 b}{3 a+2 b}\right)=\frac{\pi}{4}$ this would score M0 A0 ddM0 A0
A1: Correct simplified equation $a=-5 b$ o.e.
ddM1: Dependent on both the previous method marks. Solves their equations to find values for a and b
A1: Deduces that $z_{2}=15-3 i$ only

Question	Scheme	Marks	AOs
3	$x^{2}+y^{2}=r^{2}$	B1	1.2
	$\{V\}=\pi \int_{-r}^{r} r^{2}-x^{2} \mathrm{~d} x$ or $\{V\}=2 \pi \int_{0}^{r} r^{2}-x^{2} \mathrm{~d} x$	B1	2.1
	Integrates to the form $\alpha x \pm \beta x^{3}$ [note: the correct integration gives $\left.r^{2} x-\frac{1}{3} x^{3}\right]$	M1	1.1b
	Substitutes limits of $-r$ and r and subtracts the correct way round $\left(r^{2}(r)-\frac{1}{3}(r)^{3}\right)-\left(r^{2}(-r)-\frac{1}{3}(-r)^{3}\right)$ or Substitutes limits of 0 and r and subtracts the correct way round with twice the volume. Note the limit of 0 can be implied if gives and answer of 0 $\left(r^{2}(r)-\frac{1}{3}(r)^{3}\right)-(0)$	dM1	1.1b
	$V=\frac{4}{3} \pi r^{3} *$ cso	A1*	1.1b
		(5)	
(5 marks)			

Notes:

B1: Correct equation of the circle, may be implied by correct integral
B1: Correct expression for the volume, including limits, $\mathrm{d} x$ may be implied and if using limits r and 0 the 2 could appear later with reasoning
M1: Integrates to the form $\alpha x \pm \beta x^{3}$. Do not award if $r^{2} \rightarrow \lambda r^{3}$
dM1: Dependent on previous method mark. Correct use of limits $-r$ and r or limits of 0 and r with twice the volume.
A1*: $V=\frac{4}{3} \pi r^{3} *$ cso
Note: rotation about the \boldsymbol{y}-axis all marks are available, however for the final accuracy mark must refer to symmetry

	compares with the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ to show parallel or applies the dot product formula with the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ to show parallel		
	Concludes parallel therefore the lawn is perpendicular	A1	2.4
	Attempts $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)=\mathbf{a} \cdot\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ where $\mathbf{a}=\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right)$ or $\left(\begin{array}{c}6 \\ -3 \\ 0\end{array}\right)$ or $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$ Allow $\mathbf{r} .\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)=\mathbf{a} .\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ for this mark	M1	1.1b
	$x+2 y-10 z=2$ or $x+2 y-10 z-2=0$	A1	1.1b
		(4)	
(c)	Finds the vector $\overrightarrow{P Q}$ or $\overrightarrow{Q P}$ and uses it as the direction vector in the formula $\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$ Two out three values correct is sufficient to imply the correct method	M1	3.3
	$\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$ where $\mathbf{a}=\left(\begin{array}{c}-10 \\ 8 \\ 2\end{array}\right)$ or $\left(\begin{array}{l}6 \\ 4 \\ 3\end{array}\right)$ and $\mathbf{d}= \pm\left(\begin{array}{c}16 \\ -4 \\ 1\end{array}\right)$	A1	1.1b
		(2)	
(d)	For example: The lawn will not be flat The washing line will not be straight	B1	3.5b
		(1)	
(e)	Applies the distance formula $\frac{\|(2 \times 1)+5 \times 2+(2.75 \times-10)-2\|}{\sqrt{1^{2}+2^{2}+(-10)^{2}}}$	M1	3.4
	$=1.71 \mathrm{~m}$ or 171 cm	A1	2.2b
		(2)	
(f)	Must have an answer to part (e). Compares their answer to part (e) with 1.5 m and makes an appropriate comment about the model that is consistent with their answer to part (e). If their answer to part (e) is close to 1.5 (e.g. 1.4 to 1.6) they must compare and conclude that the model therefore is good If their answer to part (e) is significantly different to 1.5 they must compare and conclude that the model therefore it is not a good model.	B1ft	3.5a

		(1)	
	$\mathbf{(1 3}$ marks)		

Notes:

(a)

M1: Finds any two vectors $\pm \overrightarrow{L M}, \pm \overrightarrow{L N}$ or $\pm \overrightarrow{M N}$ by subtracting relevant vectors. Two out three values correct is sufficient to imply the correct method
M1: Applies the vector equation of the plane formula $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$ where \mathbf{a} is any point on the plane and the vectors \mathbf{b} and \mathbf{c} are any two from their $\pm \overrightarrow{L M}, \pm \overrightarrow{L N}$ or $\pm \overrightarrow{M N}$
A1: Any correct equation for the plane. Must start with $\mathbf{r}=\ldots$
(b)(i)

M1: Applies the dot product between their vectors \mathbf{b} AND \mathbf{c} with the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Shows both dot products $=0$ and concludes that the lawn is perpendicular to the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$

(b)(i) Alternative 1

M1: Applies the dot product between their vector $\mathbf{b}-\mathbf{c}$ AND one of their vectors \mathbf{b} or \mathbf{c} with the
vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Shows both dot products $=0$ and concludes that the lawn is perpendicular to the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
(b)(i) Alternative 2

M1: Applies the dot product between their vectors \mathbf{b} and $\mathbf{c}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and attempts to find values of x, y and z
A1: Shows results is parallel to $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ therefore the lawn is perpendicular
(b)(i) Alternative 3

M1: Applies the dot product between their answer to part (a) and the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Achieves the value 2 and concludes as a constant therefore the lawn is perpendicular
(b)(i) Outside Specification for this paper - using the cross product

M1: Finds the cross product between 'their \mathbf{b} ' and 'their \mathbf{c} ' and shows parallel to $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Concludes parallel therefore the lawn is perpendicular
(b)(ii)

M1: Applies the formula $\mathbf{r} . \mathbf{n}=\mathbf{a} . \boldsymbol{n}$ where $\mathbf{n}=\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right)$ or $\left(\begin{array}{c}6 \\ -2 \\ 0\end{array}\right)$ or $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$
A1: Correct Cartesian equation of the plane
Note: If no method is shown then it must be correct to score M1 A1, if incorrect scores M0 A0. Look at part (i) to see if there is any method as long as it if used in (ii)
(c)

M1: Finds the vector $\overrightarrow{P Q}$ or $\overrightarrow{Q P}$ and uses it as the direction vector in the formula. $\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$. Two out three values correct is sufficient to imply the correct method
A1: A correct equation including $\mathbf{r}=\ldots$
(d)

B1: States an acceptable limitation of the model for the lawn or washing line
(e)

M1: Applies the distance formula using the point $(2,5,2.75)$ and the normal vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: 1.71 m or 171 cm
(f)

B1ft: Compares their answer to part (e) with 1.5 and makes an assessment of the model with a reason with no contradictory statements.

Question	Scheme	Marks	AOs
5(a)	Volume $=r \times(r+1) \times(r+2)$	B1	1.1b
	A complete method for finding the total volume of n blocks and expressing it in sigma notation. This can be implied by later work. $\sum_{r=1}^{n}\left(r^{3}+3 r^{2}+2 r\right)$	M1	3.1b
	$V=\frac{1}{4} n^{2}(n+1)^{2}+3 \times \frac{1}{6} n(n+1)(2 n+1)+2 \times \frac{n}{2}(n+1)$	M1	2.1
	$V=\frac{1}{4} n(n+1)[n(n+1)+2(2 n+1)+4]$	dM1	1.1b
	$\begin{aligned} & V=\frac{1}{4} n(n+1)\left[n^{2}+5 n+6\right] \\ & \Rightarrow V=\frac{1}{4} n(n+1)(n+2)(n+3) * \end{aligned}$	A1*	1.1b
		(5)	
(b)	$\begin{aligned} & \text { Sets } \frac{1}{4} n(n+1)(n+2)(n+3)=n^{4}+6 n^{3}-11710 \\ & \frac{1}{4} n^{4}+\frac{3}{2} n^{3}+\frac{11}{4} n^{2}+\frac{3}{2} n=n^{4}+6 n^{3}-11710 \\ & \text { simplifies }\left(3 n^{4}+18 n^{3}-11 n^{2}-6 n-46840=0\right) \text { and solves } n=\ldots \end{aligned}$	M1	1.1b
	There are 10 blocks or $n=10$	A1	3.2a
		(2)	
(7 marks)			

Notes:

(a)

B1: Correct volume of a block
M1: Expressing the total volume of all n blocks as a series in terms of r, r^{2} and r^{3}
M1: Substitutes at least one of the standard formulae into their volume.
dM1: Attempts to factorise $\frac{1}{4} n(n+1)$ having used at least one standard formula correctly. Each term must contain a factor of $n(n+1)$
A1*: Obtains the printed result with no errors seen, no bracketing errors and following from $V=\frac{1}{4} n(n+1)\left[n^{2}+5 n+6\right]$ o.e.

Note: Going from $\frac{1}{4} n\left(n^{3}+6 n^{2}+11 n+6\right)$ to $\frac{1}{4} n(n+1)(n+2)(n+3)$ with no reasoning shown scores dM0 A0
(b)

M1: Sets the printed answer $=n^{4}+6 n^{3}-11710$, simplifies, collects terms and uses their calculator to solve a quartic equation to find a value for n.
A1: Selects $n=10$ or states that there are $\mathbf{1 0}$ blocks from a correct equation

6(i) (a) Multiplies the matrix \mathbf{A} by itself and sets equal to \mathbf{I} to form one equation in a only and another equation involving both a and b.
$\left(\begin{array}{cc}2 & a \\ a-4 & b\end{array}\right)\left(\begin{array}{cc}2 & a \\ a-4 & b\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \Rightarrow 4+a(a-4)=1$
and either $2 a+a b=0$ or $2(a-4)+b(a-4)=0$ or $a(a-4)+b^{2}=1$

Solves a 3TQ involving only the constant a. This could come after a value of b is found and this value substituted into an equation
involving both a and b
dM1
$a^{2}-4 a+3=0 \Rightarrow(a-3)(a-1)=0 \Rightarrow a=\ldots$

| $a=1, a=3$ | A1 | 11 b |
| :--- | :--- | :--- | :--- |

Substitutes a value for a into an equation involving both a and b and solves for b.
e.g.
$2(1)+(1) b \Rightarrow b=\ldots$
$2(1-4) b+(1-4)=0 \Rightarrow b=\ldots$
$(1)(1-4)+b^{2}=1 \Rightarrow b=\ldots$

Alternatively uses
$2 a+a b=0$
$a(2+b)=0$

As $a \neq 0 \quad 2+b=0 \Rightarrow b=\ldots$

$(1)(1-4)+b^{2}=1 \Rightarrow b=\ldots$			
	$b=-2$	A1	1.1 b
	(5)		

Alternative (i) (a)

Finds \mathbf{A}^{-1} in terms of a and b, sets equal to \mathbf{A} and attempts to find at least two different equations. Allow a single sign slip
$\frac{1}{2 b-a(a-4)}\left(\begin{array}{cc}b & -a \\ -(a-4) & 2\end{array}\right)=\left(\begin{array}{cc}2 & a \\ a-4 & b\end{array}\right)$
One equation from $\frac{b}{2 b-a(a-4)}=2, \frac{2}{2 b-a(a-4)}=b$
One equation from $\frac{-a}{2 b-a(a-4)}=a, \frac{-(a-4)}{2 b-a(a-4)}=a-4$

Uses their value of b and their value of the determinant to form and solve a 3TQ involving only the constant a
$a^{2}-4 a+3=0$
$\Rightarrow(a-3)(a-1)=0$
Eliminates b from their equations and solve a 3 TQ involving only the constant a

$a^{2}-4 a+3=0$ $\Rightarrow(a-3)(a-1)=0$ $\Rightarrow a=\ldots$ dM 1 1.1 b a A 1 1.1 b

	$\begin{gathered} \frac{-a}{2 b-a(a-4)}=a \\ \Rightarrow 2 b-a(a-4)=-1 \Rightarrow \frac{b}{-1}=2 \\ \text { Or } \\ \frac{-(a-4)}{2 b-a(a-4)}=a-4 \\ \Rightarrow 2 b-a(a-4)=-1 \\ \Rightarrow \frac{2}{-1}=b \end{gathered}$	Substitutes a value for a into an equation to find a value for b	dM1	1.1b
			A1	1.1b
(b)	Uses their smallest value of a and their value for \mathbf{b} to form two equations$\begin{aligned} & \left(\begin{array}{cc} 2 & ' a \\ ' a-4 ' & b^{\prime} \end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow 2 x+a y=x \text { and }(a-4) x+b y=y \\ & \left(\begin{array}{cc} 2 & 1 \\ -3 & -2 \end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow 2 x+y=x \text { and }-3 x-2 y=y \end{aligned}$		M1	3.1a
	$2 x+y=x \Rightarrow x+y=0$ o.e. and $-3 x-2 y=y \Rightarrow x+y=0$ o.e.		M1	1.1b
	$x+y=0$ o.e.		A1	2.1
			(3)	
(ii)(a)	Area of the triangle $T=3$		B1	1.1b
	Complete method to find a value for p. Need to see an attempt at the determinant and setting equal to 15 divided by their area of T. The resulting 3TQ needs to be solved to find a value of p. Determinant $3 p \times p-(-1) \times 2 p=\frac{15}{\text { their area' }} \Rightarrow p=\ldots$		M1	3.1a
	$3 p^{2}+2 p-5(=0)$		A1	1.1b
	$p=1$ must reject $p=-\frac{5}{3}$		A1	1.1b
			(4)	
(b)	$\left(\begin{array}{rr}3 & 0 \\ 0 & -2\end{array}\right)$		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
			(2)	
(c)	(their matrix found in part (b)) $\left(\begin{array}{cc}p^{\prime} & 2^{\prime} p^{\prime} \\ -1 & 3^{\prime} p^{\prime}\end{array}\right)=\left(\begin{array}{ll}\ldots & \ldots \\ \ldots & \ldots .\end{array}\right)$$\left(\begin{array}{rr} 3 & 0 \\ 0 & -2 \end{array}\right)\left(\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right)=\left(\begin{array}{ll} \ldots & \ldots \\ \ldots & \ldots \end{array}\right)$		M1	1.1b

$\left(\begin{array}{rr}3 & 6 \\ 2 & -6\end{array}\right)$	A1ft	1.1 b	
		$\mathbf{(2)}$	

Notes:

(i)(a)

M1: Forming two equations, one involving a only and one involving a and b
dM1: Dependent on previous mark, solves a 3TQ involving a
A1: Correct values for a
dM1: Dependent on first method mark Substitutes one of their values of a into an equation involving a and b and solve to find a value for b. Alternatively factorises either $2 a+a b=0$ and uses $a \neq 0$ to find a value for b.
A1: Correct value for b

Alternative(i)(a)

M1: Finds \mathbf{A}^{-1} and sets equal to \mathbf{A} and forms two different equations
dM1: Dependent on previous mark. Eliminates b from their equations and solves a 3TQ involving only the constant a. Alternatively if the value of b is found first substitutes their value for b into their determinant $=-1$ to form and solve a 3TQ for a
A1: Correct value for a
dM1: Dependent on first method mark. Substitutes a value for a into an equation to find a value for b. Alternatively uses one equation to find the determinant $=-1$ and uses this to find a value of b.
A1: Correct values for b
(b)

M1: Extracts simultaneous equations using their matrix \mathbf{A} with their smaller value of a.
M1: Gathers terms from their two equations.
A1: Achieves the correct equations and deduces the correct line. Accept equivalent equations as long as both have been shown to be the same.
(ii)(a)

B1: Area of the triangle $T=3$
M1: Full method. Finds the determinant, sets equal to 15/their area and solves the resulting 3TQ
A1: Correct quadratic
A1: $p=1$ only
(b)

B1 One correct row or column
B1: All correct
(c)

M1: Multiplies the matrices QP in the correct order (if answer only then evidence can be taken from 3 correct or 3 correct ft elements)
A1ft: Correct matrix following through on their answer to part (b) and their value of p as long as it is a positive constant

Question	Scheme	Marks	AOs
7	$z_{2}=2-3 i$	B1	1.1b
	$\left(z_{3}=\right) p-3 \mathrm{i}$ and $\left(\mathrm{z}_{4}=\right) p+3 \mathrm{i}$ May be seen in an Argand diagram	M1	3.1a
	$\left(z_{3}=\right)-4-3 i$ and $\left(z_{4}=\right)-4+3 i$ May be seen in an Argand diagram, but the complex numbers used in their method takes precedence	A1	1.1b
	$\begin{gathered} \left(z^{2}-4 z+13\right)\left(z^{2}+8 z+25\right) \\ \text { or } \\ (z-(2-3 i))(z-(2+3 i))(z-(-4-3 i))(z-(-4+3 i)) \end{gathered}$ or $a=-[(2-3 \mathrm{i})+(2+3 \mathrm{i})+(-4-3 \mathrm{i})+(-4+3 \mathrm{i})]$ and $\begin{aligned} b & =(2-3 i)(2+3 i)+(2-3 i)(-4-3 i)+(2-3 i)(-4+3 i) \\ & +(2+3 i)(-4-3 i)+(2+3 i)(-4+3 i)+(-4-3 i)(-4+3 i) \end{aligned}$ and $c=-\left[\begin{array}{c} (2-3 i)(2+3 i)(-4-3 i)+(2-3 i)(2+3 i)(-4+3 i) \\ +(2-3 i)(-4-3 i)(-4+3 i)+(2+3 i)(-4-3 i)(-4+3 i) \end{array}\right]$ and $d=(2-3 \mathrm{i})(2+3 \mathrm{i})(-4-3 \mathrm{i})(-4+3 \mathrm{i})$ or Substitutes in one root from each conjugate pair and equates real and imaginary parts and solves simultaneously $\begin{aligned} & (2 \pm 3 \mathrm{i})^{4}+a(2 \pm 3 \mathrm{i})^{3}+b(2 \pm 3 \mathrm{i})^{2}+c(2 \pm 3 \mathrm{i})+d=0 \\ & (-4 \pm 3 \mathrm{i})^{4}+a(-4 \pm 3 \mathrm{i})^{3}+b(-4 \pm 3 \mathrm{i})^{2}+c(-4 \pm 3 \mathrm{i})+d=0 \end{aligned}$	dM1	3.1a
	$\begin{gathered} a=4, b=6, c=4, d=325 \\ f(z)=z^{4}+4 z^{3}+6 z^{2}+4 z+325 \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { 1.1b } \\ & 1.1 \mathrm{~b} \end{aligned}$
		(6)	

Notes:

B1: Seen $2-3 i$
M1: Finds the third and fourth roots of the form $p \pm 3 i$. May be seen in an Argand diagram
A1: Third and fourth roots are $-4 \pm 3 i$. May be seen in an Argand diagram
dM1: Uses an appropriate method to find $f(z)$. If using roots of a polynomial at least 3 coefficients must be attempted.
A1: At least two of a, b, c, d correct
A1: All a, b, c and d correct

[^0] A0

Question	Scheme	Marks	AOs
8	Way 1: $\mathbf{f}(\boldsymbol{k}+1)-\mathbf{f}(\boldsymbol{k})$ When $n=1, \quad 2^{n+2}+3^{2 n+1}=2^{3}+3^{3}=35$ Shows the statement is true for $n=1$, allow 5(7)	B1	2.2a
	Assume true for $\boldsymbol{n}=\boldsymbol{k}$, so $2^{k+2}+3^{2 k+1}$ is divisible by 7	M1	2.4
	$\mathrm{f}(k+1)-\mathrm{f}(k)=2^{k+3}+3^{2 k+3}-\left(2^{k+2}+3^{2 k+1}\right)$	M1	2.1
	$\begin{aligned} & =2 \times 2^{k+2}+9 \times 3^{2 k+1}-2^{k+2}-3^{2 k+1} \\ & =2^{k+2}+8 \times 3^{2 k+1} \\ & =\mathrm{f}(k)+7 \times 3^{2 k+1} \text { or } 8 \mathrm{f}(k)-7 \times 2^{k+2} \end{aligned}$	A1	1.1b
	$\mathrm{f}(\mathrm{k}+1)=2 \mathrm{f}(k)+7 \times 3^{2 k+1}$ or $9 \mathrm{f}(k)-7 \times 2^{k+2}$	A1	1.1b
	If true for $\boldsymbol{n}=\boldsymbol{k}$ then true for $\boldsymbol{n}=\boldsymbol{k}+1$ and as it is true for $\boldsymbol{n}=1$ the statement is true for all (positive integers) \boldsymbol{n}	A1	2.4
		(6)	
	$\text { Way 2: } \mathbf{f}(\boldsymbol{k}+1)$ When $n=1, \quad 2^{n+2}+3^{2 n+1}=2^{3}+3^{3}=35$ So the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$, so $2^{k+2}+3^{2 k+1}$ is divisible by 7	M1	2.4
	$\mathrm{f}(\mathrm{k}+1)=2^{(k+1)+2}+3^{2(k+1)+1}$	M1	2.1
	$\begin{aligned} \mathrm{f}(k+1) & =2^{k+3}+3^{2 k+3}=2 \times 2^{k+2}+9 \times 3^{2 k+1} \\ & =2\left(2^{k+2}+3^{2 k+1}\right)+7 \times 3^{2 k+1} \\ & =2 \mathrm{f}(k)+7 \times 3^{2 k+1} \text { or } 9 f(k)-7 \times 2^{k+2} \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	If true for $\boldsymbol{n}=\boldsymbol{k}$ then true for $\boldsymbol{n}=\boldsymbol{k}+1$ and as it is true for $\boldsymbol{n}=1$ the statement is true for all (positive integers) \boldsymbol{n}	A1	2.4
		(6)	
	Way 3: $\mathbf{f}(\boldsymbol{k}+1)-\boldsymbol{m} \mathbf{f}(\boldsymbol{k})$ When $n=1, \quad 2^{n+2}+3^{2 n+1}=2^{3}+3^{3}=35$ So the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$, so $2^{k+2}+3^{2 k+1}$ is divisible by 7	M1	2.4
	$\mathrm{f}(k+1)-m f(k)=2^{k+3}+3^{2 k+3}-m\left(2^{k+2}+3^{2 k+1}\right)$	M1	2.1
	$\begin{aligned} & =2 \times 2^{k+2}+9 \times 3^{2 k+1}-m \times 2^{k+2}-m \times 3^{2 k+1} \\ & =(2-m) 2^{k+2}+9 \times 3^{2 k+1}-m \times 3^{2 k+1} \\ & =(2-m)\left(2^{k+2}+3^{2 k+1}\right)+7 \times 3^{2 k+1} \end{aligned}$	A1	1.1b
	$\mathrm{f}(k+1)=(2-m)\left(2^{k+2}+3^{2 k+1}\right)+7 \times 3^{2 k+1}+m f(k)$	A1	1.1b

	If true for $\boldsymbol{n}=\boldsymbol{k}$ then true for $\boldsymbol{n}=\boldsymbol{k}+1$ and as it is true for $\boldsymbol{n}=1$ the statement is true for all (positive integers) \boldsymbol{n}	A1	2.4
	(6)		
(6 marks)			

Notes:

$$
\text { Way 1: } \mathbf{f}(\boldsymbol{k}+1)-\mathbf{f}(\boldsymbol{k})
$$

B1: Shows that $\mathrm{f}(1)=35$ and concludes or shows divisible by 7. This may be seen in the final statement.
M1: Makes a statement that assumes the result is true for some value of n
M1: Attempts $\mathrm{f}(k+1)-\mathrm{f}(k)$
A1: Achieves a correct expression for $\mathrm{f}(k+1)-\mathrm{f}(k)$ in terms of $\mathrm{f}(k)$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks, look out for scoring B1 in this statement. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution.

$$
\text { Way 2: } \mathbf{f}(\boldsymbol{k}+1)
$$

B1: Shows that $\mathrm{f}(1)=35$ and concludes divisible by 7
M1: Makes a statement that assumes the result is true for some value of n
M1: Attempts $\mathrm{f}(k+1)$
A1: Correctly obtains either $2 f(k)$ or $7 \times 3^{2 k+1}$ or either $9 f(k)$ or $-7 \times 2^{k+2}$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution.

Way 3: $\mathbf{f}(\boldsymbol{k}+1)-\boldsymbol{m} \mathbf{f}(\boldsymbol{k})$
B1: Shows that $\mathrm{f}(1)=35$ and concludes divisible by 7
M1: Makes a statement that assumes the result is true for some value of n
M1: Attempts $\mathrm{f}(k+1)-m f(k)$
A1: Achieves a correct expression for $f(k+1)-m f(k)$ in terms of $f(k)$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution.

Question	Scheme	Marks	AOs
9(a)	$\alpha \beta \gamma=-\frac{1}{3}$ and $\alpha \beta+\alpha \gamma+\beta \gamma=-\frac{4}{3}$	B1	3.1a
	$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{-4 / 3}{-1 / 3}$	M1	1.1b
	$=4$	A1	1.1b
		(3)	
(b)	$\left\{\alpha+\beta+\gamma=-\frac{1}{3}\right\}$ New product $=\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma}=\frac{1}{\alpha \beta \gamma}=\frac{1}{-1 / 3}=\ldots(-3)$ New pair sum $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}=\frac{\gamma+\alpha+\beta}{\alpha \beta \gamma}=\frac{-1 / 3}{-1 / 3}=\ldots(1)$	M1	3.1a
	$x^{3}-($ part $(\mathrm{a})) x^{2}+($ new pair sum $) x-($ new product $)(=0)$	M1	1.1b
	$x^{3}-4 x^{2}+x+3=0$	A1	1.1b
		(3)	
	Alternative $\text { e.g. } z=\frac{1}{x} \Rightarrow \frac{3}{x^{3}}+\frac{1}{x^{2}}-\frac{4}{x}+1=0$	M1	3.1a
	$x^{3}-4 x^{2}+x+3=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(6 marks)			

Notes:

(a)

B1: Correct values for the product and pair sum of the roots
M1: A complete method to find the sum of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$. Must substitute in their values of the product and pair sum
A1: correct value 4
Note: If candidate does not divide by 3 so that $\alpha \beta \gamma=-1$ and $\alpha \beta+\alpha \gamma+\beta \gamma=-4$ the maximum they can score is B0 M1 A0
(b)

M1: A correct method to find the value of the new pair sum and the value of the new product
M1: Applies $x^{3}-(\operatorname{part}(\mathrm{a})) x^{2}+($ their new pair sum $) x-($ their new product $)(=0)$
A1: Fully correct equation, in any variable, including $=0$

(b) Alternative

M1: Realises the connection between the roots and substitutes into the cubic equation
M1: Manipulates their equation into the form $x^{3}+a x^{2}+b x+c=0$
A1: Fully correct equation in any variable, including $=0$

Question	Scheme	Marks	AOs
10	$(x-3)^{2}+(y-5)^{2}=(2 r)^{2}$ and $y=-x+2$	B1	1.1b
	$(x-3)^{2}+(-x+2-5)^{2}=(2 r)^{2}$ or $(-y+2-3)^{2}+(y-5)^{2}=(2 r)^{2}$	M1	3.1a
	$2 x^{2}+18-4 r^{2}=0$ or $2 y^{2}-8 y+26-4 r^{2}=0$	A1	1.1b
	$b^{2}-4 a c>0 \Rightarrow 0^{2}-4(2)\left(18-4 r^{2}\right)>0 \Rightarrow r>\ldots$ or $x^{2}=9-2 r^{2} \Rightarrow 9-2 r^{2}>0 \Rightarrow r>\ldots$ or $b^{2}-4 a c>0 \Rightarrow(-8)^{2}-4(2)\left(26-4 r^{2}\right)>0 \Rightarrow r>\ldots$	dM1	3.1a
	Finds a maximum value for r $(2 r)^{2}=5^{2}+(3-2)^{2} \Rightarrow r=\ldots$	M1	3.1a
	$\frac{3 \sqrt{2}}{2}<r<\frac{\sqrt{26}}{2}$ o.e.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Alternative Using a circle with centre $(3,5)$ and radius $2 r$ and $y=-x+2$	B1	1.1b
	$y-5=1(x-3) \Rightarrow y=x+2$ $x+2=-x+2 \Rightarrow x=\ldots$	M1	3.1a
	$(0,2)$	A1	1.1b
	$2 r>\sqrt{(3-0)^{2}+(5-2)^{2}} \Rightarrow r>\ldots$	dM1	3.1a
	Finds a maximum value for r $(2 r)^{2}=5^{2}+(3-2)^{2} \Rightarrow r=\ldots$	M1	3.1a
	$\frac{3 \sqrt{2}}{2}<r<\frac{\sqrt{26}}{2}$ o.e.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(7)	
(7 marks)			
Notes:			
B1: Correct equations for each loci of points M1: A complete method to find a 3TQ involving one variable using equations of the form $(x \pm 3)^{2}+(y \pm 5)^{2}=(2 r)^{2}$ or $2 r^{2}$ or r^{2} and $y= \pm x \pm 2$ A1: Correct quadratic equation			

dM1: Dependent on previous method mark. A complete method uses $b^{2}-4 a c>0$ or rearranges to find $x^{2}=\mathrm{f}(r)$ and uses $\mathrm{f}(r)>0$ to the minimum value of r.
M1: Realises there will be an upper limit for r and uses Pythagoras theorem
$(2 r)^{2}=(y \text { coord of centre })^{2}+(x \text { coord of centre }-2)^{2}$
condone $(r)^{2}=(y \text { coord of centre })^{2}+(x \text { coord of centre }-2)^{2}$
A1: One correct limit, either $\frac{3 \sqrt{2}}{2}<r$ or $r<\frac{\sqrt{26}}{2}$ o.e.
A1: Fully correct inequality

Alternative

B1: Using a circle with centre $(3,5)$ and radius $2 r$ and $y=-x+2$
M1: A complete method to find the point of intersection of the line $y= \pm x \pm 2$ and circle where the line is a tangent to the circle.
A1: Correct point of intersection
dM1: Finds the distance between the point of intersection and the centre and uses this to find the minimum value of r. Condone radius of r.
M1: Realises there will be an upper limit for r and uses Pythagoras theorem
$(2 r)^{2}=(y \text { coord of centre })^{2}+(x \text { coord of centre }-2)^{2}$
A1: One correct limit, either $\frac{3 \sqrt{2}}{2}<r$ or $r<\frac{\sqrt{26}}{2}$ o.e.
A1: Fully correct inequality

[^0]: Note: Using roots $2 \pm 3 \mathrm{i}$ and $-2 \pm 3 \mathrm{i}$ leads to $z^{4}+10 z^{2}+169$ Maximum score B1 M1 A0 M1 A0

