Pearson Edexcel

Mark Scheme (Results)

Autumn 2020

Pearson Edexcel GCE Further Mathematics AS Further Decision 2 Paper 8FM0_28

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 8FMO_28_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 40 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response.
If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Notes

(a)

B1: Valid statement regarding converting a maximisation problem to a minimisation problem
B1: Explain the need to add an unattractive value to cell CQ
(note that candidates may first assign a negative value to the CQ entry and then subtract)
(b)

B1: Mark awarded when both steps complete (subtraction and addition of extra cell)
(c)

B1: Correct statements regarding row and column reduction
M1: Simplifying the initial matrix by reducing rows and then columns
M1: Develop an improved solution - need to see one double covered +e ; one uncovered -e ; and one single covered unchanged. 2 lines needed to 3 lines needed
M1: Develop an improved solution - need to see one double covered +e ; one uncovered -e ; and one single covered unchanged. 3 lines needed to 4 lines needed (so getting to the optimal table)
B1: Correct statements regarding the minimum number of lines to cover zeros
A1: CSO on final table (so must have scored all previous M (but not necessarily the B) marks in this part) + deduction of the correct allocation

Notes

(a)(i)

B1: cao
(a)(ii)

B1: cao
(b)(i)

M1: finding row minimums and column maximums - condone one error
A1: row minima and column maxima correct
A1: correct play safes for both teams
(b)(ii)

B1: row maximin $(-2) \neq$ col minimax (2) so not stable
(c)

B1: cao (or equivalent - e.g. Qaasim because -2 is the lowest value in Noel's row) - explanation must involve consideration of values and not just (for example) a general statement that Qaasim will gain the most
(d)

B1: defining variable q
M1: setting up three expressions in terms of q
A1: all three expressions correct - allow correct un-simplified expressions for this mark
M1: axes correct, at least one line correctly drawn for their expressions
A1: correct graph
A1: using the graph to obtain the correct probability expressions leading to the correct value of q
A1ft: interpret their value of q in the context of the question - must refer to play/choose and the two players

Note that in (d) candidates may use p (or another letter) instead of q which is fine for full marks. Also, the three expressions may be the negative of what is giving in the main scheme (e.g. $10 q-6$, $2 q-2$ and $-8 q+2$) and this is fine for the first 5 marks in (d). For the final two marks though they would need to consider the optimal point reading from the top (rather than the bottom) of their graph. No follow through for the final mark if they do not read off their graph correctly.

Quest	Scheme	Marks	AOs
4	(aux equation $2 m-1=0 \Rightarrow$) complementary function is $A\left(\frac{1}{2}\right)^{n}$	B1	2.1
	Particular solution try $u_{n}=\lambda n^{2}+\beta n+\alpha$ and substitute into recurrence relation	M1	1.1b
	$\begin{aligned} & 2 \lambda n^{2}+2 \beta n+2 \alpha=(\lambda-k) n^{2}+(-2 \lambda+\beta) n+(\lambda-\beta+\alpha) \\ & \Rightarrow 2 \lambda=\lambda-k \\ & 2 \beta=-2 \lambda+\beta \\ & 2 \alpha=\lambda-\beta+\alpha \end{aligned}$	M1	1.1b
	$u_{n}=A\left(\frac{1}{2}\right)^{n}-k n^{2}+2 k n-3 k$	A1	1.1b
	$u_{0}=A-3 k, u_{2}=\frac{1}{4} A-3 k \Rightarrow 4\left(\frac{1}{4} A-3 k\right)-(A-3 k)=27 k^{2}$	M1	3.1a
	$27 k^{2}+9 k=0 \Rightarrow k=-\frac{1}{3} \quad(k \neq 0)$	A1ft	1.1b
	As n becomes large $A\left(\frac{1}{2}\right)^{n} \rightarrow 0$	B1	2.4
	$u_{n} \rightarrow \frac{1}{3} n^{2}-\frac{2}{3} n+1\left(a=\frac{1}{3}, b=-\frac{2}{3}, c=1\right)$	A1	2.2a
(8 marks)			
Notes			
B1: сао M1: correct form for the particular solution and substituted into recurrence relation M1: compares coefficients and setting up all three equations in λ, β, α A1: correct general solution (or with consistent value of k) M1: use initial condition to obtain a quadratic equation in k A1ft: correct solution for k following through their general solution B1: correct explanation that the exponential term tends to zero as n becomes large A1: cao Alternative for third \mathbf{M} mark: Note that candidates may calculate k immediately by eliminating u_{1} from $2 u_{1}=u_{0}-k$ and $2 u_{2}=u_{1}-4 k$ and comparing with $4 u_{2}-u_{0}=27 k^{2}$ to obtain a quadratic in k			

