

Mark Scheme (Result)

October 2020

Pearson Edexcel GCE In A level Further Mathematics Paper 9FM0/3A

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code 9FM0_3A_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol√ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example,

as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question	Scheme	Marks	AOs
1	$\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\sin x}-\cos(3x)-\mathrm{e}\right)}{\frac{\mathrm{d}}{\mathrm{d}x}(\tan(2x))} = \frac{\pm\cos(x)\mathrm{e}^{\sin x}\pm A\sin(3x)}{B\sec^2 2x}$	M1	1.1b
	$\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\sin x}-\cos(3x)-\mathrm{e}\right)}{\frac{\mathrm{d}}{\mathrm{d}x}(\tan(2x))} = \frac{\cos(x)\mathrm{e}^{\sin x}+3\sin(3x)}{2\sec^2 2x}$	A1 A1	1.1b 1.1b
	$\lim_{x \to \frac{\pi}{2}} \frac{\cos(x)e^{\sin x} + 3\sin(3x)}{2\sec^2 2x} = \frac{\cos\left(\frac{\pi}{2}\right)e^{\sin\left(\frac{\pi}{2}\right)} + 3\sin\left(\frac{3\pi}{2}\right)}{2\sec^2\left(\frac{2\pi}{2}\right)} \text{ or } = \frac{0 \times e + 3 \times (-1)}{2 \times (-1)^2} = \dots$	M1	1.2
	$=-\frac{3}{2}*$	A1*	2.1
		(5)	
		(5 n	narks)

Notes:

M1: Attempts differentiation of both numerator and denominator, including at least one use of the chain rule. Either numerator or denominator of the correct form. May be done separately.

A1: Numerator correct

A1: Denominator correct

M1: Applies l'Hospital's Rule, must see clear use of a substitution of $x = \frac{p}{2}$ into their derivatives,

not the original expression. (no need to see check that limits of numerator and denominator are non-zero).

A1*: Needs to be a correct intermediate line following substitution before reaching the printed answer with use of some limit notation. All aspects of the proof should be clear for this mark to be awarded and no errors seen.

Question				S	cheme				Marks	AOs
2	Step	$\frac{1}{3}$							B1	1.1b
		${\mathcal{Y}}_0$	y_1	<i>Y</i> ₂	<i>Y</i> ₃	${\mathcal Y}_4$	y_5	y_6		
	x	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$	1	M1	3.4
	y	0	2.2981	2.9544	3	2.9544	2.2981	0		
	$y_0 + $ $\{0+$	$4y_1 + 2$ 4(2.29)	$y_2 + 4y_3 + 81 + 3 + 2$	$(2y_4 + 4y_5 + 2)$ (2981)+ 2	$+ y_6 = "4$ (2.9544)	2.203" + 2.9544)	+ 0}		M1	1.1b
	= 42		$= 24 \cos\left(\frac{2\pi}{9}\right)$	$\left(\frac{\pi}{2}\right) + 12\cos(2\theta)$	$s\left(\frac{\pi}{18}\right) + 1$	2)			A1	1.1b
	So v	olume r	equired is	approx. – 1	$\frac{85}{000} \times \frac{\frac{1}{3}}{3} \times \frac{1}{3} \times \frac{1}{$	<"42.203"			M1	3.1a
	= aw	rt 0.398	86 m ³						A1	3.2a
	Alter step	rnative $\frac{1}{6}$ and	interval [(the answer),1]) : is double	d later				B1	1.1b
		${\mathcal{Y}}_0$	<i>Y</i> ₁	<i>Y</i> ₂	\mathcal{Y}_3	\mathcal{Y}_4	\mathcal{Y}_5	y_6		
	x	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{5}{6}$	1	M1	3.4
	y	3	2.9971	2.9544	2.7716	2.2981	1.3852	0		
	$\begin{vmatrix} y_0 + \\ \{3+ \end{vmatrix}$	$4y_1 + 2$ 4(2.99	$y_2 + 4y_3 + 71 + 2.771$	$2y_4 + 4y_5$ 6+1.3852	$+ y_6 = "4$ 2)+ 2(2.	2.1206" 9544+ 2.2	2981)+ 0}		M1	1.1b
	Awr	t 42.121	l						A1	1.1b
	So v	olume r	required is	approx. – 1	$\frac{85}{000} \times \frac{\frac{1}{6}}{3} \times \frac{1}{3}$	×"42.1206	5"×2		M1	3.1a
	= aw	rt 0.397	78 m ³						A1	3.2a
									(6)	
									(6 n	narks)
Netze										

Notes:

B1: Correct strip width for the method chosen $\frac{1}{3}$ for the interval [-1,1]

M1: Uses the model to find the appropriate values for the method. May use that the function is even to only work out half of them, so may be implied by use in the formula. At least two correct values to 4 s.f. needed for the method.

M1: Applies the "bracket" of Simpson's rule, $y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + y_6$ ". Coefficients must be correct.

A1: Correct value for the "bracket". If not explicitly seen, may be implied by awrt 4.689 as a value for the cross section area following correct values.

PMT

M1: Correct full method to find the volume. E.g. multiplies their bracket by their $\frac{h}{3}$ and by 0.085. Accept an attempt in any consistent units, so e.g. in mm³ ie $85 \times \frac{1}{3} \times "42.203" \times 1000^2$ A1: Correct answer in m³. B1: Correct strip width for the method chosen $\frac{1}{6}$ for the interval [0,1] and later doubled. M1: Uses the model to find the appropriate values for the method. May use that the function is even to only work out half of them, so may be implied by use in the formula. At least two correct values to 4 s.f. needed for the method.

M1: Applies the "bracket" of Simpson's rule, $y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + y_6$ ". Coefficients must be correct.

A1: Correct value for the "bracket". If not explicitly seen, may be implied by awrt 4.680 as a value for the cross section area following correct values.

M1: Correct full method to find the volume. E.g. multiplies their bracket by their $\frac{h}{2}$ and by 0.085.

Accept an attempt in any consistent units, so e.g. in mm³ ie $85 \times \frac{\frac{1}{6}}{3} \times "42.203" \times 1000^2 \times 2$

A1: Correct answer in m³.

<u>Using 6 ordinates</u>

Max score B0 M1 M0 A0 M0 A0

	\mathcal{Y}_0	<i>Y</i> ₁	<i>Y</i> ₂	<i>V</i> ₃	\mathcal{Y}_4	${\mathcal Y}_5$
x	-1	-0.6	-0.2	0.2	0.6	1
У	0	2.53298	2.9941	2.9941	2.53298	0

B0: Incorrect strip width

M1: Uses the model to find the appropriate values for the method. At least two correct values to 4 s.f. needed for the method.

Question	Scheme	Marks	AOs		
3 (a)	$\overrightarrow{AB} = -2\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AC} = -5\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$	B1	1.1b		
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} -2 & 6 & 4 \\ -5 & 5 & 2 \end{vmatrix}$ $= (6 \times 2 - 4 \times 5)\mathbf{i} - (-2 \times 2 - 4 \times -5)\mathbf{j} + (-2 \times 5 - 6 \times -5)\mathbf{k}$	M1	1.1b		
	$= -8\mathbf{i} - 16\mathbf{j} + 20\mathbf{k}$	A1	1.1b		
		(3)			
(b)	E.g. $\mathbf{n} = -8\mathbf{i} - 16\mathbf{j} + 20\mathbf{k}$ gives $p = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}).(-8\mathbf{i} - 16\mathbf{j} + 20\mathbf{k}) =$ E.g. $\mathbf{n} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ gives $p = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}).(2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) =$	M1	1.1b		
	Equation is $\mathbf{r}.(-8\mathbf{i}-16\mathbf{j}+20\mathbf{k}) = 28 \text{ or } \mathbf{r}.(2\mathbf{i}+4\mathbf{j}-5\mathbf{k}) = -7 \text{ (oe)}$	A1	2.5		
		(2)			
(c)	$\overrightarrow{AD}.(\overrightarrow{AB}\times\overrightarrow{AC}) = "\overrightarrow{AD}".(-8\mathbf{i}-16\mathbf{j}+20\mathbf{k}) = \dots$	M1	1.1b		
	$\overrightarrow{AD} = 5\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}$	B1	1.1b		
	Volume = $\frac{1}{6} \left \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) \right = \frac{1}{6} \left (5\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}) \cdot (-8\mathbf{i} - 16\mathbf{j} + 20\mathbf{k}) \right = \dots$	M1	3.1a		
	$=\frac{52}{3}$ o.e. $17\frac{1}{3}$	A1	1.1b		
		(4)			
		(9 n	narks)		
Notes:					
(a)					
B1: Both A	\vec{B} and AC correct.				
MI: Applie	es the cross product to their <i>AB</i> and their <i>AC</i> . There must be at least two $ 6 \ 4 -2 \ 4 -2 $	6 6	• •		
components	if no method seen. Method can be implied by $\mathbf{i} \begin{vmatrix} 5 & 2 \end{vmatrix}^{-1} \mathbf{j} \begin{vmatrix} -5 & 2 \end{vmatrix}^{+1} \mathbf{k} \begin{vmatrix} -5 & 2 \end{vmatrix}^{-1}$	$ 5 ^{=W}$	71th at		
least one con	rrect component.				
(b)					
M1: Uses th	heir n (which may be any multiple of their $\overrightarrow{AB} \times \overrightarrow{AC}$) and any point on the	ne plane in	an		
attempt to fi	and p. (Use of \overrightarrow{AB} or \overrightarrow{AC} is M0.)				
A1: Correct	equation in form stated. Accept any multiples, e.g. $\mathbf{r}.(-8\mathbf{i}-16\mathbf{j}+20\mathbf{k}) =$	28			
(c)		1.	.1 1		
MII: Attempts a suitable scalar triple product, e.g. $AD.(AB \times AC)$. Must include a complete method to use all measurements vectors					
B1: Correct	B1: Correct $\overline{AD'}$ if using $\overline{AD} \cdot (\overline{AB} \times \overline{AC'})$, or all vectors correct if using a different product.				

M1: Use of volume = $\frac{1}{6} |\text{their } \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC})|$ (oe full method to find the volume). **A1:** Correct exact answer.

Question	Scheme	Marks	AOs
	$f(x) = x^4 \sin(2x)$ $u = x^4$ $v = \sin(2x)$		
4	$u' = 4x^3, u'' = 12x^2, u''' = 24x, u^{(4)} = 24 \text{ (and } u^{(n)} = 0 \text{ for } n > 4\text{)}$	M1	1.1b
	$v' = 2\cos(2x), v'' = -4\sin(2x), v''' = -8\cos(2x), v^{(4)} = 16\sin(2x),$ $v^{(5)} = 32\cos(2x), v^{(6)} = -64\sin(2x), v^{(7)} = -128\cos(2x),$ $v^{(8)} = 256\sin(2x),$	M1 A1 A1	3.1a 1.1b 1.1b
	$f^{(8)}(x) = x^{4} \times 256 \sin(2x) + 8 \times 4x^{3} \times -128 \cos(2x)$ Thus $+\frac{8 \times 7}{2} \times 12x^{2} \times -64 \sin(2x) + \frac{8 \times 7 \times 6}{6} \times 24x \times 32 \cos(2x)$ $+\frac{8 \times 7 \times 6 \times 5}{24} \times 24 \times 16 \sin(2x)$ $f^{(8)}(x) = x^{4} \times 256 \sin(2x) + 8 \times 4x^{3} \times -128 \cos(2x)$ $+28 \times 12x^{2} \times -64 \sin(2x) + 56 \times 24x \times 32 \cos(2x)$ $+70 \times 24 \times 16 \sin(2x)$	M1	2.1
	$f^{(8)}(\pi) = 0 - 4096\pi^3 - 0 + 1344 \times 2^5\pi + 0 \ \left(= -4096\pi^3 + 43008\pi \right)$	M1	1.1b
	Coefficient is $\frac{f^{(8)}(\pi)}{8!} = \frac{1344 \times 2^5 \pi - 4096 \pi^3}{8! \operatorname{or} \{40320\}}$	M1	2.2a
	$=\frac{336\pi - 32\pi^{3}}{315}$ (So <i>a</i> = 336 and <i>b</i> = -32)	A1	2.1
		(8)	
		(8 n	narks)

Notes:

M1: Establishes the non-disappearing derivatives of x^4 . Allow slips in coefficients, but powers must decrease.

M1: Identifies the relevant derivatives for sin(2x), up to the 8th derivative or establishes the correct pattern. Look for alternating between sin and cos. Condone use of *x*.

A1: Correct sizes for the coefficients, allow sign errors for this mark (may be due to incorrect signs when differentiating sin and cos) Must have angle 2x.

A1: All derivatives correctly established. (Note the sin terms may be omitted if the student has made clear they will disappear, but if present they must be correct).

M1: Applies Leibnitz's theorem to get the 8th derivative with their expressions. Binomial coefficients must be present.

M1: Evaluates their $\overline{8^{\text{th}}}$ derivative at π

M1: Uses Taylor series – divides their value for $f^{(8)}(\pi)$ by 8!

A1: Simplifies to the correct answer.

Note: If do not use Leibnitz's theorem then maximum M0 M0 A0 A0 M0 M1 M1 A0

Question	Scheme	Marks	AOs
5(a)	$b^2 = a^2(1-e^2) \Longrightarrow 16 = 36(1-e^2) \Longrightarrow e = \dots$	M1	1.1b
	$e^2 = \frac{20}{36}$ or $\frac{5}{9}$ or $e = \frac{\sqrt{5}}{3}$	A1	1.1b
	Foci are $(\pm 2\sqrt{5}, 0)$	A1	1.1b
		(3)	
(b)	Perimeter = $PS + PS' + SS'$ where $PS + PS' = e(PM + PM') =$	M1	3.1a
	$=e\times\frac{2a}{e}=\dots$	M1	2.2a
	$\dots + 2 \times 2\sqrt{5}$	B1ft	1.1b
	= $12 + 4\sqrt{5}$ hence perimeter is constant for any <i>P</i> on <i>E</i> .*	A1*	2.1
	$P(b\cos\theta, 4\sin\theta) = \frac{P(b\cos\theta, 4\sin\theta)}{S(a\sqrt{5}, 0)}$ Perimeter = $PS + PS' + SS'$ $PS = \sqrt{(2\sqrt{5} - 6\cos q)^2 + (4\sin q)^2} = \dots \{6 - 2\sqrt{5}\cos q\}$ $PS \not= \sqrt{(2\sqrt{5} + 6\cos q)^2 + (4\sin q)^2} = \dots \{6 + 2\sqrt{5}\cos q\}$	M1	3.1a
	$PS + PS \not \in (6 - 2\sqrt{5}\cos q) + (6 + 2\sqrt{5}\cos q) = B$	M1	2.2a
	$\dots + 2 \times 2\sqrt{5}$	B1ft	1.1b
	= $12 + 4\sqrt{5}$ hence perimeter is constant for any <i>P</i> on <i>E</i> .*	A1*	2.1
		(4)	
		(7 n	narks)
Notes:			
(a) M1: Uses $b^2 = a^2(1-e^2)$ with $a = 6$ and $b = 4$ to find a value for e^2 or e . A1: Correct value for e or e^2 A1: Correct foci			

(b)

M1: Forms a complete strategy to find the perimeter using general *P* and applies the focus directrix property to the sides *PS* and *PS*'

M1: Deduces the length of the two sides adjacent to P is a constant

B1ft: Uses *SS*' is twice their *ae* from (a)

A1*: Finds the value and makes conclusion that perimeter is constant for any *P* on *E* Alternative

M1: Forms a complete strategy to find the perimeter using general *P*. Finds the lengths of *PS* and *PS*¢using Pythagoras theorem and the general coordinate $(6\cos q, 4\sin q)$

M1: Deduces the length of the two sides adjacent to P is a constant, using trig identities.

B1ft: Uses *SS*' is twice their *ae* from (a)

A1*: Finds the value and makes conclusion that perimeter is constant for any P on E

Note: Using the property that PS + PS' = 2a both method marks may be awarded as long as a reason is given e.g. definition/property of an ellipse

Question	Scheme	Marks	AOs		
6(a)	Establishes need for $ 5t-31 > 3t^2-25t+8 $ and attempts to find all C.V.'s to form the critical region, e.g. via a sketch.	M1	3.1a		
	$5t-31 = 3t^2 - 25t + 8 \Longrightarrow 3t^2 - 30t + 39 = 0 \Longrightarrow t = \dots$ $t = 5 \pm 2\sqrt{3}$	M1 A1	1.1b 3.4		
	$-(5t-31) = 3t^{2} - 25t + 8 \Longrightarrow 3t^{2} - 20t - 23 = 0 \Longrightarrow t = \dots$ $t = (-1), \frac{23}{3}$	M1 A1	2.1 3.4		
	Selects "insides" $(-1 <)\alpha < t < \beta, \gamma < t < \delta$ where $\alpha < \beta < \gamma < \delta$	M1	2.2a		
	$(-1 <)0,, \forall < 5 - 2\sqrt{3} \text{ or } \frac{23}{3} < t < 5 + 2\sqrt{3}$	A1	1.1b		
	Both regions, 0,, $\forall t < 5 - 2\sqrt{3}$ and $\frac{23}{3} < t < 5 + 2\sqrt{3}$	A1	2.3		
	Establishes need for $ 5t-31 > 3t^2-25t+8 $ and attempts to find all C.V.'s to form the critical region, e.g. via a sketch.	M1	3.1a		
	$(5t-31)^{2} = (3t^{2}-25t+8)^{2} \Longrightarrow \dots$ 9t ⁴ - 150t ³ + 648t ² - 90t - 897 = 0	M1 A1	1.1b 3.4		
	Solves $9t^4 - 150t^3 + 648t^2 - 90t - 897 = 0$ P $t =$ $t = 5 \pm 2\sqrt{3}, \frac{23}{3}, \{-1\}$	M1 A1	2.1 3.4		
	Selects "insides" $(-1 <)\alpha < t < \beta, \gamma < t < \delta$ where $\alpha < \beta < \gamma < \delta$	M1	2.2a		
	$(-1 <)0, \ \forall < 5 - 2\sqrt{3}$ or $\frac{23}{3} < t < 5 + 2\sqrt{3}$ condone any variable	A1	1.1b		
	Both regions, 0,, $\forall t < 5 - 2\sqrt{3}$ and $\frac{23}{3} < t < 5 + 2\sqrt{3}$ must be using t	A1	2.3		
		(8)			
(b)	Time that <i>B</i> is closer to <i>O</i> than particle <i>A</i> is $5+2\sqrt{3}-\frac{23}{3}+5-2\sqrt{3}=\frac{7}{3}$ seconds.	M1	3.4		
	This is considerably less than 4 seconds so the model does not seem appropriate.	A1ft	3.5a		
		(2)			
		(10 n	narks)		
Notes:	Notes:				

(a)

M1: Sets problem up as an inequalities problem, and forms complete strategy to solve – must see attempt at all critical values and some attempt to form at least one range from them. May be scored if algebra not used. This mark is for showing an overall awareness of the problem.

M1: Attempts to find C.V.'s for the "positives". Any valid method using algebra. Must see an attempt to find a 3TQ (oe), but allow answers from calculator once a 3TQ =0 is seen.

A1: Correct C.V.'s, both required.

M1: Attempts to find the other C.V.'s (same conditions as above)

A1: Correct C.V.'s. Need not see the negative value stated as t > 0 is required. (If both given, they must be correct)

M1: Selects correct critical regions, shows the idea the "insides" are needed.

 $(-1 <)\alpha < t < \beta, \gamma < t < \delta$ where $\alpha < \beta < \gamma < \delta$ are their four critical values, possibly truncated at 0 as long as no more than 1 is negative.

A1: One correct interval. Allow with loose or strict inequalities. Allow this mark if $-1 < t < 5 - 2\sqrt{3}$ is given. Allow any variable for this mark.

A1: Fully correct solution. Must start at zero for the leftmost interval but accept < or ,, here. Must be using *t*

(a) Alternative

M1: Sets problem up as an inequalities problem, and forms complete strategy to solve – must see attempt at all critical values and some attempt to form at least one ranges from them. May be scored if algebra not used. This mark is for showing an overall awareness of the problem.

M1: Attempts to find C.V.'s by squaring both sides and forming a quartic equation.

A1: Correct quartic equation

M1: Attempts to solve their quartic equation

A1: All 4 correct exact C.V.'s. Need not see the negative value stated as t > 0 is required.

M1: Selects correct critical regions, shows the idea the "insides" are needed.

 $(-1 <)\alpha < t < \beta, \gamma < t < \delta$ where $\alpha < \beta < \gamma < \delta$ are their four critical values, possibly truncated at 0 as long as no more than 1 is negative.

A1: One correct interval. Allow with loose or strict inequalities. Allow this mark if $-1 < t < 5 - 2\sqrt{3}$ is given. Allow any variable for this mark.

A1: Fully correct solution. Must start at zero for the leftmost interval but accept < or ,, here. Must be using *t*

(b)

M1: Uses their result from (a) to determine how long particle *B* is closer to *O* than particle *A* is.

A1: Draws a suitable conclusion for their answer to (a) - if correct in (a) it is that the model is not very suitable. Must not have a negative time.

Question	Scheme	Mark s	AOs
7(a)	Gradient of $PQ = \frac{18q - 18p}{9q^2 - 9p^2} = \frac{2}{p+q}$ $PQ = \frac{18q - 18p}{9q^2 - 9p^2} = \frac{2}{p+q}$ $PQ = \frac{18q - 18p}{9q^2m + c} = \frac{18p - 18q}{p+q} = \frac{9p^2m - 9q^2m}{18q - 9q^2m + c}$ $PQ = \frac{18q - 18p}{9q^2 - 9p^2} = \frac{2}{p+q}$ $PQ = \frac{18p - 18q}{9q^2 - 9p^2} = \frac{2}{p+q}$	B1	2.2a
	Equation of <i>l</i> is $y-18p = "\frac{2}{p+q}"(x-9p^2)$ $18p = 9p^2 \underbrace{\overset{\circ}{g}}_{p+q} \underbrace{\overset{\circ}{\frac{1}{2}}}_{p+q} \underbrace{\overset{\circ}{\frac{1}{2}}}_{p+q} c$ $p c = \dots$	M1	1.1b
	Leading to $(p+q)y = 2(x+9pq)^*$	A1*	2.1
		(3)	
(b)	Complete method to find equation of both normals and attempts to solve simultaneously	M1	3.1a
	E.g. $2y \frac{dy}{dx} = 36 \Rightarrow m_T = \frac{36}{36p} \Rightarrow m_N = -p$	B1	1.1b
	Normal at P is $y-18p = -p(x-9p^2)$ or normal at Q is $y-18q = -q(x-9q^2)$ (oe)	M1	2.1
	Both normals correct $y-18p = -p(x-9p^2)$ or $y = -px+9p^3+18p$ (o.e.) $y-18q = -q(x-9q^2)$ or $y = -qx+9q^3+18q$ (o.e.)	A1	2.2a
	E.g. $18p - px + 9p^3 - 18q = -qx + 9q^3 \implies x =$	M1	1.1b
	Need to show that $(9p^3 - 9q^3 + 18p - 18q) = (9p^2 + q^2 + pq + 2)(p - q)$ or $p^3 - q^3 = (p^2 + pq + q^2)(p - q)$ Leading to $x_A = 9(p^2 + q^2 + pq + 2)*$	A1*	2.2a
	$y = -9p(p^{2} + q^{2} + pq + 2) + 9p^{3} + 18p = -9p^{2}q - 9pq^{2}$ Leading to $y_{A} = -9pq(p+q)^{*}$	A1*	2.2a
		(7)	
(c)	(12,0) on $l \Rightarrow pq = -\frac{4}{3}$ (oe)	B 1	3.1a
	Hence $x_A = 9\left(p^2 + q^2 + \frac{2}{3}\right)$ and $y_A = 12(p+q)$	M1	1.1b
	$y^{2} = 144(p^{2} + q^{2} + 2pq) = 144\left(\frac{x}{9} - \frac{2}{3} + 2\left(-\frac{4}{3}\right)\right)$	M1	3.1a
	$y^2 = 16(x-30)$ or $y^2 = 16x - 480$	A1	1.1b
		(4)	

(14 mark
Notes:
(a)
B1: Deduces gradient is $\frac{2}{p+q}$. May be implied by correct simplification of equation if the
unsimplified form is used to start with.
M1: Correct method for the equation of the line (gradient need not be simplified/correct for this method, as long as it is clearly an attempt at the gradient).
A1*: Completes to the correct equation with no errors seen.
(b)
M1: A correct overall method – must find both normals and attempt to solve simultaneously. They d not need to reach $x = $ or $y = $ as long as they have eliminated one variable.
B1: Correct gradient of normal found from any correct method or just stated.
M1: A full correct method to find the equation of at least one of the normals with justification of the gradient shown.
A1: Deduces equation of the second normal – so both correct.
M1: Solves the two normal equations simultaneously leading to either $x = \dots$ or $y = \dots$
A1*: Need to show that $(9p^3 - 9q^3 + 18p - 18q) = (9p^2 + q^2 + pq + 2)(p - q)$ leading to correct x
coordinate with no errors seen. This could by long division or factorising.
A1*: Correct <i>y</i> coordinate with no errors seen.
(c)
B1: Uses the condition on l to establish the relationship between p and q
M1 . Uses their relationship between n and α to simplify the expressions

M1: Uses their relationship between p and q to simplify the expressions M1: Any complete method for relating x and y independently of p and q

A1: $y^2 = 16(x-30)$ or $y^2 = 16x-480$

Question	Scheme	Marks	AOs
8(a)	$f(x) = \frac{3}{13 + 6 \times \frac{2t}{1 + t^2} - 5 \times \frac{1 - t^2}{1 + t^2}}$	M1	1.1b
	$=\frac{3(1+t^2)}{13(1+t^2)+12t-5(1-t^2)}$	M1	1.1b
	$= \frac{3(1+t^2)}{18t^2 + 12t + 8} \Rightarrow \text{ for example} \frac{3(1+t^2)}{2(9t^2 + 6t + 1) + 6} \text{ or } \frac{3(1+t^2)}{2[(3t+1)^2 - 1] + 8}$ $\Rightarrow \frac{3(1+t^2)}{2(3t+1)^2 + 6} *$	A1*	2.1
		(3)	
(b)	$f(x) = \frac{3}{7} \Rightarrow \frac{3(1+t^2)}{2(3t+1)^2+6} = \frac{3}{7} \Rightarrow 21+21t^2 = 54t^2+36t+24$	M1	1.1b
	$\Rightarrow 11t^{-} + 12t + 1 = 0$ $\Rightarrow (11t + 1)(t + 1) = 0 \Rightarrow t = \dots$	M1	1.1b
	$t = -1, t = -\frac{1}{11}$	A1	1.1b
	$\Rightarrow x = 2 \arctan("their t") + 2\pi$ for a negative t	dM1	3.1a
	$x = \frac{3\pi}{2}$ or awrt 4.71 and awrt $x = 6.10$	A1	1.1b
		(5)	
(c)	$\int f(x) = \int \frac{3(1+t^2)}{2(3t+1)^2+6} \times \frac{2}{1+t^2} dt = \int \frac{3}{(3t+1)^2+3} dt$	B1	2.1
	$= K \arctan(M(3t+1)) \qquad u = (3t+1) \Longrightarrow K \arctan(Mu)$	M1	1.1b
	$=\frac{1}{\sqrt{3}}\arctan\left(\frac{3t+1}{\sqrt{3}}\right) \qquad \qquad =\frac{1}{\sqrt{3}}\arctan\left(\frac{u}{\sqrt{3}}\right)$	A1	1.1b
	$\int_{\frac{\pi}{3}}^{\frac{4\pi}{3}} f(x) dx = \int_{\frac{\pi}{3}}^{\pi} f(x) dx + \int_{\pi}^{\frac{4\pi}{3}} f(x) dx$ $= \int_{\frac{\sqrt{3}}{3}}^{\infty} \dots dt + \int_{-\infty}^{-\sqrt{3}} \dots dt \text{ or } \int_{\sqrt{3}+1}^{\infty} \dots du + \int_{-\infty}^{1-3\sqrt{3}} \dots du$	B1	3.1a
	$=\frac{1}{\sqrt{3}}\arctan\left(\frac{3\left(-\sqrt{3}\right)+1}{\sqrt{3}}\right)-\frac{1}{\sqrt{3}}\arctan\left(\frac{3\left(\frac{\sqrt{3}}{3}\right)+1}{\sqrt{3}}\right)+\dots$	M1	1.1b

PMT

PMT