P

 Pearson

 Pearson Edexcel

 Edexcel}

Mark Scheme (Result)

October 2020

Pearson Edexcel GCE In A level Further Mathematics

Paper 9FM0/4B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 9FMO_4B_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Qu	Scheme	Marks	AO
1	$\mathrm{H}_{0}: \sigma_{a}^{2}=\sigma_{b}^{2} \quad \mathrm{H}_{1}: \sigma_{a}^{2}>\sigma_{b}^{2}$	B1	2.5
	$s_{a}{ }^{2}=\frac{145496}{6}=[24249.33 \ldots] \quad s_{b}{ }^{2}=\frac{56364.4}{9}=[6262.711 \ldots]$	M1	1.1b
	$F_{6,9}=\frac{" 24249.33 \ldots "}{\text { "6262...." }}$	M1	2.1
	$=3.872 \ldots$	A1	1.1 b
	$F_{6,9}(5 \%$ one-tail) c.v. $=3.37$	B1	1.1b
	Significant, there is evidence to support Gina's belief	A1 (6)	2.2b
		(6 marks)	
	Notes		
	$1{ }^{\text {st }} \mathrm{B} 1$ for both hypotheses in terms of σ. for at least one of the s^{2} calculations correctly attempted $1^{\text {st }}$ M1 NB $s_{a}=155.72 \ldots$ accept awrt 156 and $s_{b}=79.137 \ldots$ accept awrt 79.1 $2^{\text {nd }}$ M1 for a correct calculation of the test statistic (ft their $\left.s^{2}\right)$ $1^{\text {st }} \mathrm{A} 1$ for awrt 3.87 $2^{\text {nd }} \mathrm{B} 1$ for correct cv awrt 3.37 $2^{\text {nd }} \mathrm{A} 1$ for a correct conclusion mentioning Gina's belief (o.e.)		

Qu	Scheme	Marks	Grade	AO
2(a)	$\bar{x}=444$	M1	Low	2.1
	$s_{x}^{2}=\frac{1577314-8 \times 444^{2}}{7}=\frac{226}{7}=32.2857 . .$		Low	1.1b
	$t_{7}(5 \%) 2$-tail cv $=2.365$	B1	Low	1.1b
	95% CI for μ is: $444 \pm 2.365 \times \sqrt{\frac{32.2857 \ldots}{8}}$	M1	Med	2.1
	$=(439.248 \ldots, 448.75 \ldots) \quad=$ awrt $\underline{(439,449)}$	$\mathrm{Al}_{(5)}$	Med	1.1b
(b)	440 is in CI so the average contents statement is OK	B1 (1) (6 marks)	High	2.2b
	Notes			
(a)	```\(1^{\text {st }} \mathrm{M} 1\) for finding mean and attempting \(s^{2}\) \(1^{\text {st }} \mathrm{A} 1\) for correct mean and \(s^{2}\) (accept awrt 3sf) B1 for a correct cv of 2.365 or better \(2^{\text {nd }} \mathrm{M} 1\) for use of correct formula, ft their mean, \(s_{x}\) and cv for \(t\) (use of 1.96 is M0) \(2^{\text {nd }}\) A1 for awrt \((439,449)\)```			
(b)	$1^{\text {st }} \mathrm{B} 1$ for correct statement about 440 and interval and conclusion			

Qu	Scheme	Marks	AO
3 I	(Is feasible as a residual plot but) probably a non-linear relationship	B1	2.2b
	Since the residuals are not randomly scattered about zero	B1	2.4
II	Impossible as a residual plot	B1	2.2a
	Since the residuals do not sum to zero	B1	2.4
III	(Is feasible as a residual plot) and probably a linear relationship	B1	2.2 b
	Since the points are randomly scattered about zero	B1 (6)	2.4
		(6 marks)	
	Notes		
I	$1^{\text {st }} \mathrm{B} 1$ for stating possibly non-linear (allow a suitable sketch) $2^{\text {nd }}$ B1 for a suitable comment (e.g. follow a systematic pattern)		
II	$1^{\text {st }} \mathrm{B} 1$ for stating not feasible as a residual plot $2^{\text {nd }} \mathrm{B} 1$ for a correct reason		
III	$1^{\text {st }} \mathrm{B} 1$ for stating probably a linear relationship $2^{\text {nd }} \mathrm{B} 1$ for a suitable supporting reason		

Qu	Scheme	Marks	AO
5(a)	$\int(1-\cos x) \mathrm{d} x=[x-\sin x]$	M1	1.1b
	Use of correct limits and $\int \mathrm{f}(x) \mathrm{d} x=1 \Rightarrow 2 \pi-0-0=1$	M1	1.1 b
	$\text { so } k=\frac{1}{2 \pi}(*)$	A1*cso (3)	1.1b
(b)	$\mathrm{E}(X)=\pi \text { (symmetry) so } \mu=\pi \text { so } \mathrm{f}(\mu)=\frac{1}{2 \pi}(1-\cos \pi)=\frac{1}{\pi}$	B1	2.2a
	$\frac{1}{\sigma \sqrt{2 \pi}}=" \frac{1}{\pi} " \quad ; \quad \text { so } \sigma=\sqrt{\frac{\pi}{2}}$	$\begin{aligned} & \text { M1; } \\ & \text { A1 } \end{aligned}$	1.1 b 1.1 b
		(3)	
(c)	$\mathrm{P}\left(\frac{\pi}{2}<X<\frac{3 \pi}{2}\right)=\frac{1}{2 \pi}[x-\sin x]_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}=\frac{1}{2 \pi}\left[\left(\frac{3 \pi}{2}--1\right)-\left(\frac{\pi}{2}-1\right)\right]$	M1	3.4
	$=\frac{2+\pi}{2 \pi}(=0.81830 \ldots)$		1.1 b
	$\mathrm{P}\left(\frac{\pi}{2}<Y<\frac{3 \pi}{2}\right)=0.7899 \ldots$	B1	1.1b
	So error is $0.81830 \ldots-0.7899 \ldots=0.0284$	$\begin{array}{ll} \mathrm{A} 1 \\ \\ \hline \end{array}$	1.1 b
		(10 marks)	
	Notes		
(a)	$1^{\text {st }}$ M1 attempt to integrate $(1-\cos x)$ - one correct term $2^{\text {nd }}$ M1 for use of correct limits and correct method for k A1* cso use of $\int \mathrm{f}(x) \mathrm{d} x=1$ seen and no incorrect working seen		
(b)	B1 for correctly deducing the value of $\mathrm{f}(\mu)$ M1 for a correct equation for $\sigma-\mathrm{ft}$ their value for $\mathrm{f}(\mu)$ [condone for sight of correct $\mathrm{g}(\mu)$] A1 for $\sqrt{\frac{\pi}{2}}$ or exact equivalent		
(c)	M1 for a correct attempt to find prob - some correct integration and use of limits $1^{\text {st }}$ A1 for a correct answer (exact or 0.818 .. or better) B1 for a correct probability from their calculator i.e. 0.7899 or better accept 0.79 $2^{\text {nd }} A 1$ for 0.0284 or better		

