

 Pearson

 Pearson Edexcel

 Edexcel}

Mark Scheme (Result)
October 2020

Pearson Edexcel GCE In A level Further Mathematics
Paper 9FM0/3D

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 9FMO_3D_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75.
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

| Questi
 on | | | |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Currently five workers are required between time 7 and 10 and so one of the non-critical activities \(\mathrm{D}, \mathrm{F}, \mathrm{G}\) or H would have to be delayed and start after time 10 \\
e.g. Activity H could be delayed and start at time 10 (as it has sufficient total float and can finish as late as time 15) and so the project can be completed with fewer workers than the number indicated by the resource histogram as J could be delayed too and start at time 15
\end{tabular} \& M1

A1 \& 2.4
2.2 a

\hline \& \& (2) \&

\hline \multicolumn{4}{|r|}{(15 marks)}

\hline \multicolumn{4}{|c|}{Notes for Question 2}

\hline \multicolumn{4}{|l|}{| (a) |
| :--- |
| B1: Correct explanation for precedence dummy (must mention $\mathrm{B}, \mathrm{C}, \mathrm{H}$ and one of F or G) |
| B1: Correct explanation for uniqueness dummy |
| (b) |
| B1: Six correct rows (not including A, B and C) |
| B1: All rows correct (accept blanks for A, B and C) |
| (c)(i) |
| M1: All top boxes completed, number generally increasing L to R (condone one "rogue") |
| A1: CAO - Top boxes |
| M1: All bottom boxes completed, numbers generally decreasing R to L (condone one "rogue") condone lack of 0 or 21 for the M mark only |
| A1: CAO - Bottom boxes |
| (c)(ii) |
| A1ft: Correct follow through from their completed top boxes |
| (c)(iii) |
| A1: Correct critical activities (A, E, I and L only) |
| (d) |
| M1: Plausible histogram (correct up to time 6) with no holes or overhangs (must go to at least 20 on the time axis) |
| A1: Histogram correct to time 10 |
| A1: Histogram correct from time 10 to time 21 |
| (e) |
| M1: Explanation involving the need to delay just one of the non-critical activities (must mention one of D, F, G or H) to start after time 10 (oe) - follow through their histogram |
| A1: Dependent on a correct histogram and correct answer to (c)(i). Correct deduction that it is possible to complete with fewer workers e.g. delay H to start at 10 therefore delay J to start at its late time (or 15) - A0 if mention of delaying activity F |}

\hline
\end{tabular}

Questi on	Scheme													Marks	AOs
3(a)	Time matrix						Route matrix							B1B1	1.1 b1.1 b
		A	B	C	D	E	A		A	B		D	E		
	A	-	8	4	7	∞			A	B	C	D	E		
	B	8	-	3	∞	10			A	B	C	D	E		
	C	4	3	-	∞	6			A	B	C	D	E		
	D	7	∞	1	-	1			A	B	C	D	E		
	E	∞	10	6	1	-			A	B	C	D	E		
														(2)	
(b)	Time matrix						Route matrix							$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		A	B	C	D	E		A	B		C	D	E		
	A	-	7	4	7	10	A	A	C		C	D	C		
	B	7	-	3	14	9	B	C	B		C	C	C		
	C	4	3	-	11	6	C	A	B		C	A	E		
	D	5	4	1	-	1	D	C	C		C	D	E		
	E	10	9	6	1	-	E	C	C		C	D	E		
	Time matrix						Route matrix								
		A	B	C	D	E		A	B		C	D	E		
	A	-	7	4	7	8	A	A	C		C	D	D		
	B	7	-	3	14	9	B	C	B		C	C	C		
	C	4	3	-	11	6	C	A	B		C	A	E		
	D	5	4	1	-	1	D	C	C		C	D	E		
	E	6	5	2	1	-	E	D	D		D	D	E		
														(4)	
(c)(i)	NNA: $\mathrm{A}-\mathrm{C}-\mathrm{B}-\mathrm{E}-\mathrm{D}-\mathrm{A}$$\begin{aligned} & 4+3+9+1+5=22 \text { minutes } \\ & \mathrm{A}-\mathrm{C}-\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{D}-\mathrm{C}-\mathrm{A} \end{aligned}$													B1	1.1 b
(ii)														dB1	1.1 b
(iii)														B1	3.2a
														(3)	
														(9 marks)	
Notes for Question 3															
(a) B1: Correct time matrix B1: Correct route matrix															

```
(b)
M1: No change in the third row and third column of both matrices with at least one value in the time
matrix reduced correctly and one value in the route matrix changed to C
A1: CAO
M1: No change in the fourth row and fourth column of both matrices with at least one value in the
time matrix reduced correctly (follow through their first iteration) and one value in the route matrix
changed to D
A1: CAO
(c)(i)
B1: CAO
(c)(ii)
dB1: CAO - not from A - C - D - E - B - A
(c)(iii)
B1: CAO
```

Questi on	Scheme	Marks	AOs
4(a)	$2 y \leq 5 x, y \geq x+1,6 x+5 y \leq 30$	B2,1,0	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.5 \end{gathered}$
		(2)	
(b)	$\begin{aligned} & \left(\frac{2}{3}, \frac{5}{3}\right),\left(\frac{60}{37}, \frac{150}{37}\right),\left(\frac{25}{11}, \frac{36}{11}\right) \\ & \left(\frac{2}{3}, \frac{5}{3}\right) \rightarrow P=\frac{11}{3} \\ & \left(\frac{60}{37}, \frac{150}{37}\right) \rightarrow P=\frac{330}{37} \\ & \left(\frac{25}{11}, \frac{36}{11}\right) \rightarrow P=\frac{111}{11} \text { so optimal vertex is }\left(\frac{25}{11}, \frac{36}{11}\right) \end{aligned}$	B1 B1 M1 A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$ 2.1 $2.2 \mathrm{a}$
		(4)	
(c)	$\begin{aligned} & Q=3 x+a y \\ & 3\left(\frac{25}{11}\right)+\frac{36 a}{11}>3\left(\frac{60}{37}\right)+\frac{150 a}{37} \\ & \Rightarrow a<\frac{5}{2} \\ & 3\left(\frac{25}{11}\right)+\frac{36 a}{11}>3\left(\frac{2}{3}\right)+\frac{5 a}{3} \\ & \Rightarrow a>-3 \end{aligned}$	M1 A1 M1 A1	3.1a 2.2a 1.1b 2.2a
		(4)	
(10 marks)			
Notes for Question 4			
(a) B1: Any two correct (accept strict inequalities) - accept equivalent inequalities B1: CAO (accept equivalent inequalities but inequalities must not be strict) (b) B1: One correct vertex (must be exact) B1: All three correct vertices (must be exact) M1: Testing all three of their vertices in the correct objective function A1: Correct three values of P and correct optimal vertex either stated or clearly indicated on the graph			

(c)

M1: Their optimal point from (b) evaluated in Q compared to their $\left(\frac{60}{37}, \frac{150}{37}\right)$ evaluated in Q (with correct inequality)
A1: $a<\frac{5}{2}$
M1: Their optimal point from (b) evaluated in Q compared to their $\left(\frac{2}{3}, \frac{5}{3}\right)$ evaluated in Q (with correct inequality)
A1: $a>-3$

Questi on	Scheme	Marks	AOs
5(a)	If x has been placed in $\operatorname{Bin} 2$ then $10<x \leq 31-$ this is because Bin 1 at this stage only contains 40 and before x had been placed in Bin 2 it only contained 19 As the 18 has been placed in Bin 3 this implies that $x>50-(19+18)$ so $x>13$ As the 10 has been placed in Bin 2 after the x then $x \leq 50-(19+10)$ so $x \leq 21$ However, the number are all distinct and therefore $13<x<21$	B1 B1 B1	3.1a 2.4 $2.2 \mathrm{a}$
		(3)	
(b)	$13<x<17$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$
		(2)	
(c)	If x has been placed in Bin 3 then this implies that $x \leq 15$ So x is either 14 or $15-$ but as $\operatorname{Bin} 2$ is full $\Rightarrow x=14$	M1 A1	$\begin{gathered} 2.4 \\ 2.2 \mathrm{a} \end{gathered}$
		(2)	
(7 marks)			
Notes for Question 5			
(a) B1: Correct reasoning of why $x>13$ accept $x>50-(19+18)$ B1: Correct explanation of why $x \leq 21$ accept $x \leq 50-(19+10)$ B1: Correct deduction that $13<x<21$ must mention that the numbers are distinct (oe) (b) B1: Use first complete pass to deduce that $x<17$ B1: Correct lower bound of $x>13$ (c) M1: Using first-fit decreasing in an attempt to derive new upper bound for x (so either for stating both x could equal 14 or $15, x \leq 15$ or $x<15$) A1: Correct deduction that $x=14$ (must clearly state or imply that Bin 2 is full)			

\begin{tabular}{|c|c|c|c|}
\hline Questi on \& Scheme \& Marks \& AOs \\
\hline 6(a) \& The graph has exactly two odd nodes and so the graph is semi-Euleria \& \[
\begin{gathered}
\mathrm{B} 1 \\
\mathrm{~dB} 1
\end{gathered}
\] \& 2.4
2.2 a \\
\hline \& \& (2) \& \\
\hline (b) \& \begin{tabular}{l}
Shortest path from A to F is \(58+x\) and shortest path from A to G is
\[
\begin{aligned}
\& 60+y \\
\& 58+x+60+y=140
\end{aligned}
\] \\
The only odd nodes in the network are A and G \\
Route inspection algorithm: Shortest route between A and G is \(60+y\)
\[
\begin{aligned}
\& \Rightarrow 320+x+y+60+y=409 \\
\& x=15 \text { and } y=7
\end{aligned}
\]
\end{tabular} \& M1
A1
A1
A1

A1ft
M1
B1
M1
A1 \& 1.1 b
1.1 b
1.1 b
1.1 b

2.2 a
2.1
2.2 a
2.1b
2.1
2.2 a

\hline \& \& (9) \&

\hline \multicolumn{4}{|r|}{(11 marks)}

\hline \multicolumn{4}{|c|}{Notes for Question 6}

\hline \multicolumn{4}{|l|}{| (a) |
| :--- |
| B1: Explanation which consists of the graph having two odd nodes or stating graph is semi-Euleria |
| dB1: Exactly two odd nodes (or two odd nodes and five even nodes or the rest even) together with the deduction that therefore the graph is semi-Eulerian |
| (b) |
| M1: For a larger number replaced by a smaller one in two working value boxes at $\mathrm{C}, \mathrm{D}, \mathrm{G}$ or F |
| A1: For all values correct (and in correct order) at A, B and C |
| A1: For all values correct (and in correct order) at E and D |
| A1: For all values correct (and in correct order) at G and F |
| A1ft: Length of shortest path from A to F or A to G stated (may be seen in an equation(s)) |
| M1: (length of shortest path from A to F) $+($ length of shortest path from A to G) $=140$ - linear equation in x and y |
| B1: Correctly stating the two odd nodes (A and G) - could be implied by subsequent working |
| M1: For an equation based on the route from A to $\mathrm{G}(320+x+y+$ final value at $\mathrm{G}($ in $y)=409)$ |
| A1: CAO for x and y |}

\hline
\end{tabular}

(17 marks)

Notes for Question 7

```
(a)
B1: CAO - including maximise (or max)
B1: CAO (oe)
B1: CAO (oe)
B1: CAO (oe)
(b)
```

M1: Setting up the new objective and substituting for a_{1} and a_{2}
A1: Correct values substituted into Table 1
(c)
B1: CAO - mention that $A=0$
B1: At least three values stated correctly
B1: All six values correct (ignore values stated for a_{1}, a_{2} and P)
(d)
M1: Correct pivot located, attempt to divide row

A1: Pivot row correct including change of b.v.
M1: All values in one of the non-pivot rows correct or one of the non zero and one columns (y, s_{1}, s_{3} or value) correct following through their choice of pivot from column s_{2} or s_{3}
A1: Row operations used correctly at least twice, i.e. two of the non zero and one columns (y, s_{1}, s_{3} or value) correct
A1: CAO all values and row operations correctly stated - allow if row operations given in terms of old row 1 - ignore b.v. column for this mark
(e)(i)

B1: Correct reasoning of why solution is optimal or using $P=69-\frac{15}{7} y-\frac{11}{7} s_{1}-\frac{3}{7} s_{3}$ and mentioning increasing y, s_{1}, s_{3} would decrease $P(\mathrm{oe})$
(e)(ii)

B1ft: their value of P - dependent on both M marks in (d)
(e)(iii)

B1ft: their values of the basic variables only - dependent on both M marks in (d)

