Pearson Edexcel

Mark Scheme (Result)

October 2020

Pearson Edexcel GCE
In AS Level Mathematics
8MA0 Paper 21 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 8MAO_21_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Scheme	Marks	AOs
1	1 square is $\frac{78}{12 \times 3+3 \times 4+2 \times 2}=\left[\frac{78}{52}=1.5\right]$ and $(8 \times 1+1 \times 8) \times 1.5$ "	M1	3.1a
	24 students took less than 11 minutes	A1	1.1b
	Percentage of students $=\frac{" 24 "}{78+24 "+1 \times 8 \times 11.5 "+3 \times 4 \times 11.5 "} \times 100$	M1	3.1 b
	$=18.18 \ldots$ awrt 18%	A1	1.1 b
		(4)	

Total 4

Notes

$\mathbf{1}$	M1:	For clear use of frequency density to establish the fd scale and then use the area to find frequency of <11 minutes. Allow maximum of 3 errors in either the heights or widths in total if working shown. They may calculate the area using other size squares. Allow for realising they need to find the total number of squares (88) maximum of 4 errors in either the heights or widths and number <11 minutes(16) - must have a maximum of 1 error in either the heights or widths (and not use the 78 as part of calulation)
	A1:	For correct values seen. Allow for 88 and 16
	M1:	For realising the need to find the total and calculating a percentage. (with "their $24 "$ as the numerator). Allow $(8 \times 1+2 \times 8) \times$ " $1.5 "$ instead of " $24 "+1 \times 8 \times " 1.5 " ~ I f ~ w o r k i n g ~ s h o w n ~ c a n ~$ allow maximum of 2 errors in either the heights or widths in the calculation of the total. Allow "their $24 " / 132$ oe
	A1:	awrt 18

Question		Scheme	Marks	AOs
2(a)		0 to 500 m	B1	1.2
			(1)	
(b)		$1100+1600+1.5 \times 1600$ [$=5100$]	M1	2.1
		$5300>5100$ therefore outlier	A1	1.1b
			(2)	
(c)		As the humidity increases the mean visibility decreases	B1	2.4
			(1)	
(d)		(Hours of) sunshine	B1	2.2b
			(1)	
(5 marks)				
Notes				
(a)	B1:	For realising it is the maximum distance and distance given with correct units. Allow 0 to 50 dm or $<500 \mathrm{~m}$ or $<50 \mathrm{dm}$		
(b)	M1:	Attempt to find Q_{3} and the upper limit		
	A1:	5100 , if a value for the point is stated it must be above 5100 otherwise it is A0. For a statement comparing and conclusion it is an outlier or it is above $\mathrm{Q}_{3}+1.5 \mathrm{IQR}$. Allow accept the point circled is greater than 5100 oe		
(c)	B1:	For a suitable interpretation of a negative correlation mentioning humidity and visibility		
(d)	B1:	A correct deduction that the unlabelled variable is the hours of sunshine. Condone missing hours. Do not allow if more than one variable given. Must be quantative variable Not cloud cover since values bigger than 8 Not wind speed since values not integers Not daily mean temperature since mean temperature near to zero are unlikely in June		

Question		Scheme	Marks	AOs
4(a)		It is not possible to have a sampling frame	B1	2.3
			(1)	
(b)		Quota sampling and (catch 85 common carp, 45 mirror carp and 30 leather carp) or (ignore any fish caught of a type where the quota is full)	M1	1.1a
		Quota sampling and catch 85 common carp, 45 mirror carp and 30 leather carp and ignore any fish caught of a type where the quota is full	A1	1.1b
			(2)	
(c)		$\sigma=\sqrt{\frac{3053}{160}-\left(\frac{692}{160}\right)^{2}}$	M1	1.1b
		$=0.6129 \ldots$ awrt 0.613	A1	1.1b
			(2)	
(d)(i)		This would have no effect as the piece of data would remain in the same class	B1	2.2a
(ii)		This would increase the standard deviation as change in mean is small and $6.4-4.6 \approx 3 \sigma$ therefore estimate of standard deviation will increase	B1	2.2a
			(2)	
(7 marks)				
Notes				
(a)	B1:	For the idea there cannot be a sampling frame/list		
(b)	M1:	Quota sampling and either for the correct numbers of each type or for the idea that if quota full ignore the fish.		
	A1:	Quota sampling and both the correct numbers of each type and for the idea that if quota full ignore the fish or sample until all quotas are full		
(c)	M1:	A correct expression for σ		
	A1:	Awrt 0.613 allow $s=$ awrt 0.615		
(d)	B1:	Correct deduction with suitable explanation Allow range for class. Do not allow there is no differences		
	B1:	Correct deduction with suitable explanation. so would increase the standard deviation and a suitable reason. Allow the value is bigger than any others in the table oe		

Question		Scheme	Marks	AOs
5(a)		Let $C=$ the number of successful calls. $C \square \mathrm{~B}\left(9, \frac{1}{6}\right)$	M1	3.3
		$\mathrm{P}(C \geq 3)=1-\mathrm{P}(C \leq 2)=0.1782 \ldots \quad$ awrt 0.178	A1	1.1b
			(2)	
(b)		Let $X=$ the number of occasions when at least 3 calls are successful. $\mathrm{P}(X=1)=5 \times(" 0.1782 \ldots ") \times(" 0.8217 \ldots . . .)^{4}$	M1	1.1b
		$=0.4061 \ldots$ awrt 0.406	A1	1.1b
			(2)	
(c)		$\mathrm{H}_{0}: p=\frac{1}{6} \quad \mathrm{H}_{1}: p>\frac{1}{6}$	B1	2.5
		Let $R=$ the number of successful calls $R \square \mathrm{~B}\left(35, \frac{1}{6}\right)$	M1	3.3
		$\mathrm{P}(R \geq 11)=1-\mathrm{P}(R \leq 10)=0.02 \ldots$	A1	3.4
		There is sufficient evidence to support that Rowan has more successful sales calls than Afrika.	A1	2.2b
			(4)	
(8 marks)				
Notes				
5(a)	M1:	For selecting the right model		
	A1:	awrt 0.178		
(b)	M1:	For $5 \times($ "their $(a) ") \times(\text { " } 1-\text { their }(a) \text { " })^{4}$		
	A1:	awrt 0.406		
(c)	B1:	for correctly stating both hypotheses in terms of p or π Accept $p=0.11{ }_{6}$		
	M1:	For selecting a suitable model. May be implied by a correct probability or CR		
	A1:	Correct probability statement and answer of 0.02 or better ($0.02318 \ldots$) $(\mathrm{CR} R \geq 11$ and either $\mathrm{P}(R \leq 9)=0.9450$ or $\mathrm{P}(R \leq 10)=0.9768$ or $1-\mathrm{P}(R \leq 10)=0.0232)$		
	A1:	Dependent on M1A1 but can ignore hypotheses. For conclusion in context supporting Rowan's belief / Rowan is a better sales person		
		Do not accept Rowan can reject H_{0}		

