Pearson Edexcel

Mark Scheme (Result)
November 2021

Pearson Edexcel GCE Further Mathematics Advanced Level in Further Mathematics Paper 9FM0/3B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 9FMO_3B_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Paper 3B/ 2021: Statistics 1 Mark scheme

Question		Scheme	Marks	AOs
1(a)		$x=4 \times 43-47-34-36=55^{*}$	B1*	3.4
			(1)	
(b)		$v=4-1=3$ since the only constraint is that the totals agree	B1	2.4
			(1)	
(c)		H_{0} : The die is unbiased	B1	2.1
		H_{1} : The die is biased		
		$\text { Test Statistic }=\frac{(47-43)^{2}}{43}+\frac{(34-43)^{2}}{43}+\frac{(36-43)^{2}}{43}+\frac{(55-43)^{2}}{43}$	M1	1.1b
		$=6.744 \ldots$	A1	1.1b
		$\chi_{(3,0.05)}^{2}=7.815$	B1	1.1b
		Not in the critical region since 7.815 > " $6.74 \ldots$..." therefore insufficient evidence to reject H_{0} Inconclusive test - consistent with the die being unbiased.	A1	3.5a
			(5)	
			(7 marks)	
Notes:				
(a)	B1*:	Using the uniform model to show the missing observed value eg$x=\frac{43-0.25 \times(47+34+36)}{0.25}=55$		
(b)	B1:	$4-1=3$ (may be in words) and explanation of what the constraint is		
(c)	B1:	Both hypotheses correct. eg The data fits a discrete uniform distribution		
	M1:	Attempting to find $\sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E}-N$ May be implied by awrt 6.74 or p value of $0.0805 \ldots$		
	A1:	awrt 6.74 or $\frac{290}{43}$ oe May be implied by p value of $0.0805 \ldots$		
	B1:	awrt 7.82 (Calc 7.8147...)		
	A1:	Drawing correct inference in context. Need the word die or tetrahedral		

Question		Scheme	Marks	AOs
3		$\bar{X} \approx \mathrm{~N}(256, \ldots)$ oe	M1	3.1a
		$\bar{X} \approx \mathrm{~N}(256,0.9216)$	A1	1.1b
		$\mathrm{P}(\bar{X}>257)=\mathrm{P}\left(Z>\frac{257-256}{\sqrt{10.9216^{\prime \prime}}}\right)[=$ awrt 1.04]	dM1	3.4
		$p=0.1492 \ldots$	A1	1.1b
			(4)	
(4 marks)				
Notes:				
	M1:	For realising the need to use the CLT with correct mean		
	A1:	For a correct normal stated		
	dM1:	Dep on previous Method mark. Use of the normal model to find $\mathrm{P}(\bar{X}>257)$ If final answer is incorrect then we need to see the standardisation using their σ.		
	A1:	awrt 0.149 (0.14878... from calculator)		
		NB Allow awrt 0.148 if a continuity correction is used.		

Question	Scheme	Marks	AOs
5(a)	$\begin{aligned} & \mathrm{P}(\text { at least } 3 \text { whites })=(1-0.07)^{3} \\ & \text { or } 1-0.07-0.93 \times 0.07-0.93^{2} \times 0.07 \end{aligned}$	M1	1.1b
	$=0.8043 \ldots \quad$ awrt 0.804	A1	1.1b
		(2)	
(b)	$\mathrm{P}\left(2\right.$ nd red on $9^{\text {th }}$ draw $)=\binom{8}{1} 0.93^{7} \times 0.07^{2}$	M1	3.3
	$=0.02358 \ldots \quad$ awrt 0.0236	A1	1.1b
		(2)	
(c)	$\frac{n}{p}=4400 \text { and } \frac{n(1-p)}{p^{2}}=660^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$1-p=99 p$ oe	M1	1.1 b
	$p=0.01$	A1	1.1b
		(4)	
(d)	$\mathrm{H}_{0}: p=0.07 \quad \mathrm{H}_{1}: p<0.07$	B1	2.5
	$J \sim \mathrm{Geo}(0.07)$	M1	3.3
	$\mathrm{P}(J \geq c)<0.1 \Rightarrow(1-0.07)^{c-1}<0.1$	M1	3.4
	$c-1>\frac{\log 0.1}{\log 0.93}$	M1	1.1b
	$c>32.72 \ldots \quad \therefore \mathrm{CR} \quad J \geq 33$	A1	1.1 b
		(5)	
(e)	34 is in the Critical region	M1	1.1b
	There is evidence to suggest that Jerry's bag contains a smaller proportion of red counters than Asha's bag.	A1	2.2b
		(2)	
(f)	Power of test $=\mathrm{P}(J \geq 33 \mid p=0.011)$	M1	2.1
	$=(1-0.011)^{32} \mathrm{oe}$	M1	1.1b
	$=0.7019 \ldots$ *	A1*	1.1b
		(3)	
(18 marks)			

Question	Scheme	Marks	AOs
6(a)	$\mathrm{G}_{X}(1)=1$	M1	2.1
	$k \times 3^{5}=1 \quad \therefore k=\frac{1}{243} *$	A1* ${ }^{\text {cso }}$ (2)	1.1b
(b)	$\mathrm{P}(X=2)$ is coefficient of t^{2} so $\mathrm{G}_{X}(t)=k\left(\ldots+{ }^{5} C_{2}(2 t)^{2}+\ldots\right)$	M1	1.1b
	$\mathrm{P}(X=2)=\frac{40}{243}$	A1 (2)	1.1b
(c)	$\mathrm{G}_{W}(t)=\frac{t^{3}}{243}\left(1+2\left(t^{2}\right)\right)^{5}$	M1	3.1a
	$\mathrm{G}_{W}(t)=\frac{t^{3}}{243}\left(1+2 t^{2}\right)^{5}$	A1 (2)	1.1b
(d)	$G_{U}(t)=\frac{1}{243}(1+2 t)^{5} \times \frac{t(1+2 t)^{2}}{9}$	M1	3.1a
	$=\frac{t(1+2 t)^{7}}{2187}$	A1 (2)	1.1b
(e)	$\mathrm{G}_{U}{ }^{\prime}(t)=\frac{14 t(1+2 t)^{6}}{2187}+\frac{(1+2 t)^{7}}{2187}$	M1	2.1
	$\mathrm{G}_{U}{ }^{\prime}(1)=\frac{17}{3}$	A1ft	1.1b
	$\mathrm{G}_{U}^{\prime \prime}(t)=\frac{168 t(1+2 t)^{5}}{2187}+\frac{14(1+2 t)^{6}}{2187}+\frac{14(1+2 t)^{6}}{2187}$	M1	2.1
	$\mathrm{G}_{U}{ }^{\prime \prime}(1)=28$	A1	1.1b
	$\operatorname{Var}(U)=" 28 "+" \frac{17}{3}-\left(" \frac{17}{3} n\right)^{2}$	M1	2.1
	$=\frac{14}{9}$	A1 (6)	1.1b
ALT(e)	$\mathrm{G}_{X}{ }^{\prime \prime}(t)=A(1+2 t)^{3}$	M1	
	$\mathrm{G}_{X}{ }^{\prime}(1)=\frac{10}{3}$ and $\mathrm{G}_{X}{ }^{\prime \prime}(1)=\frac{80}{9}$	A1ft	
	$\mathrm{G}_{Y}{ }^{\prime \prime}(t)=H(8+24 t)$	M1	
	$\mathrm{G}_{Y}{ }^{\prime}(1)=\frac{7}{3}$ and $\mathrm{G}_{Y}{ }^{\prime \prime}(1)=\frac{32}{9}$	A1	
	Using $\mathrm{G}_{U}{ }^{\prime \prime}(1)+\mathrm{G}_{U}{ }^{\prime}(1)-\left(\mathrm{G}_{U}{ }^{\prime}(1)\right)^{2}$ to find $\operatorname{Var}(X), \operatorname{Var} Y$ and $\operatorname{Var} U$	M1	
	$\frac{14}{9}$ or awrt1.56	A1	
(14 marks)			

Notes:

(a)	M1:	Stating $\mathrm{G}_{X}(1)=1 \quad$ eg $\quad \mathrm{G}_{X}(1)=k(1+2)^{5}=1 \quad k(1+2)^{5}=1$ Allow Verification $\frac{1}{243} \times 3^{5}=1$
	A1*:	Fully correct proof with no errors Substituting $t=1$ Verification need therefore $\mathrm{G}_{X}(1)=1$
(b)	M1:	Attempting to find the coefficient of t^{2}
	A1:	$\frac{40}{243}$ or awrt 0.165
(c)	M1:	Realising the need to multiply through by t^{3} or subst t^{2} for t
	A1:	$\frac{t^{3}}{243}\left(1+2 t^{2}\right)^{5} \text { oe eg } \frac{t^{3}}{243}\left(1+10 t^{2}+40 t^{4}+80 t^{6}+80 t^{8}+32 t^{10}\right)$
(d)	M1:	Realising the need to use $G_{U}(t)=G_{X}(t) \times G_{Y}(t)$
	A1:	$\frac{t(1+2 t)^{7}}{2187} \mathrm{oe}$
(e)	M1:	For an attempt to differentiate $\mathrm{G}(u)$ e.g $\mathrm{G}_{U}{ }^{\prime}(t)=A t(1+2 t)^{6}+B(1+2 t)^{7} \mathrm{ft}$ their $\operatorname{part}(\mathrm{d})$ if in the form $k t(1+2 t)^{n}$ where $n \geqslant 5$
	A1ft:	$\frac{17}{3}$ or awrt 5.67
	M1:	For attempting second derivative eg $\mathrm{G}_{U}{ }^{\prime \prime}(t)=C t(1+2 t)^{5}+D(1+2 t)^{6} \mathrm{ft}$ their $\operatorname{part}(\mathrm{d})$ if in the form $k t(1+2 t)^{n}$ where $n \geqslant 5$
	A1	28
	M1:	Using $\mathrm{G}_{U}{ }^{\prime \prime}(1)+\mathrm{G}_{U}{ }^{\prime}(1)-\left(\mathrm{G}_{U}{ }^{\prime}(1)\right)^{2} \mathrm{ft}$ their values
	A1:	$\frac{14}{9}$ or awrt1.56

Question		Scheme	Marks	AOs
7(a)		of the test $=0.01$	B1	1.2
			(1)	
(b)(i)	Let CR be $\bar{L}<k$			
	$\frac{k-15}{\frac{0.2}{\sqrt{n}}}=-2.3263$		M1	3.4
	$k=15-\frac{0.46526}{\sqrt{n}}$		A1	1.1b
	$\frac{" 15-\frac{0.46526}{\sqrt{n}}-14.9}{\frac{0.2}{\sqrt{n}}}>1.6449$		$\begin{aligned} & \text { M1d } \\ & \text { A1ft } \end{aligned}$	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\frac{0.79424}{\sqrt{n}}<0.1 \quad \sqrt{n}>7.9424$ oe		M1d	1.1b
	$n=64$		A1cso	2.1
			(6)	
(ii)		The probability of a Type II error would decrease.	B1	2.2a
			(1)	
(8 marks)				
Notes				
(a)	B1: 0.01		0.01	
(b)(i)	M1:	Finding the CR using the Normal distribution must have $1.5<\|z\|<3.5$		
	A1:	A correct equation in the form $k=\ldots$ and for use of awrt 2.326 (implied by awrt 0.46526 or awrt 0.46527)		
	M1d:	Dependent on previous M being awarded. Standardising using their k and equating to a z value $1.5<\|z\|<3$ to form an equation to able n to be found. May use $=$ rather than >		
	A1ft:	Ft their k for a correct equation with awrt 1.645		
	M1d:	Dependent on previous M being awarded. Isolating \sqrt{n} or squaring both sides leading to a value for n. Condone $n=7.9424$		
	A1cso:	64 with correct working		
(ii)	B1:	Suitable comment		

$\begin{aligned} & \text { ALT } \\ & \text { (b)(i) } \end{aligned}$	$\frac{k-14.9}{\frac{0.2}{\sqrt{n}}}=1.6449$	M1	3.4
	$k=14.9+\frac{0.32898}{\sqrt{n}}$	A1	1.1b
	$\frac{" 14.9+\frac{0.32898}{\sqrt{n}} "-15}{\frac{0.2}{\sqrt{n}}}>-2.3263$	$\begin{gathered} \text { M1d } \\ \text { A1ft } \end{gathered}$	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\frac{0.79424}{\sqrt{n}}<0.1 \quad \sqrt{n}>7.9424$ oe	M1d	1.1b
	$n=64$	A1cso	2.1
		(6)	

