P
 Pearson
 Edexcel

Mark Scheme (Result)
November 2021

Pearson Edexcel GCE Further Mathematics Advanced Level in Further Mathematics
Decision 2
Paper 9FM0/4D

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 9FMO_4D_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question Scheme		Marks	AOs
1	Let $x_{i j}$ be 0 or 1 $\left\{\begin{array}{lc} 1 & \text { if worker }(i) \text { does task }(j) \\ 0 & \text { otherwise } \end{array}\right.$	B1	3.3
	where $i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ and $j \in\{1,2,3,4\}$	B1	2.5
	$\begin{aligned} \operatorname{minimise} C= & 53 x_{\mathrm{A} 1}+100^{\prime} x_{\mathrm{A} 2}+62 x_{\mathrm{A} 3}+48 x_{\mathrm{B} 1}+57 x_{\mathrm{B} 2}+59 x_{\mathrm{B} 3} \\ & +55 x_{\mathrm{C} 1}+63 x_{\mathrm{C} 2}+58 x_{\mathrm{C} 3}+69 x_{\mathrm{D} 1}+49 x_{\mathrm{D} 2}+{ }^{\prime} 100^{\prime} x_{\mathrm{D} 3} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 3.3 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\begin{aligned} & \text { Subject to } \sum x_{\mathrm{A} j}=1, \sum x_{\mathrm{B} j}=1, \sum x_{\mathrm{C} j}=1, \sum x_{\mathrm{D} j}=1 \\ & \sum x_{i 1}=1, \sum x_{i 2}=1, \sum x_{i 3}=1, \sum x_{i 4}=1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 3.3 \\ 1.1 \mathrm{~b} \end{gathered}$
		(6)	
(6 marks)			
Notes: B1: Defining $x_{i j}$ correctly B1: Correct definition of the values that i and j can take M1: Attempt at 12 term expression, coefficients 'correct', 2 'large' values included, condone 2 slips. A1: cao including 'minimise' M1: At least four correct equations, each in three or four variables, unit coefficients, equal to 1 A1: cao (all eight equations) No dummy column can score a maximum of B1B0M1A1M0A0 No 'large' values in A2 and D3 can score a maximum B1B1M0A0M1A1 No 'large' values or dummy column can score a maximum of B1B0M0A0M0A0			

Quest	Scheme	Marks	AOs
2	EMV is $£ 0$ and Alka should not play the game	M1 B1 A1 M1 M1 A1 B1	3.3 1.1b 1.1b 3.4 3.4 1.1b 3.2a
		(7)	
(7 marks)			

Notes:

M1: Tree diagram with at least five end pay-offs, two decision nodes and two chance nodes
B1: Correct probabilities for rolling an 8 or more and obtaining the same number on both dice
A1: Correct structure for the tree diagram with each arc labelled correctly (including probabilities)
M1: At least three end-pay offs consistent with their stated probabilities; all five attempted
M1: Chance nodes attempted with their probabilities
A1: cao for chance and decision nodes including double line through inferior option
B1: Correct EMV and analysis in context

| | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

4(a)	$x_{n+2}=2 y_{n+1}+3 \Rightarrow x_{n+2}=2\left(-4 x_{n}+3 x_{n+1}\right)+3$ Leading to $x_{n+2}-6 x_{n+1}+8 x_{n}=3 *$	B1	2.2a
		(1)	
(b)	aux equation $m^{2}-6 m+8=0 \Rightarrow m=2, m=4$ $x_{n}=A(2)^{n}+B(4)^{n}$ particular solution try $x_{n}=\lambda$ $\begin{aligned} & \therefore \lambda-6 \lambda+8 \lambda=3 \Rightarrow \lambda[=1] \\ & x_{n}=A(2)^{n}+B(4)^{n}+1 \\ & x_{1}=1 \Rightarrow 2 A+4 B=0 \\ & y_{1}=a \Rightarrow x_{2}=2 a+3 \\ & 4 A+16 B+1=2 a+3 \\ & A=-\frac{(a+1)}{2}, B=\frac{(a+1)}{4} \Rightarrow x_{n}=(a+1)(4)^{n-1}-(a+1)(2)^{n-1}+1(\mathrm{oe}) \end{aligned}$	B1 B1 M1 A1 M1 B1 M1 A1	2.1 1.1b 1.1b 2.2a 1.1b 3.1a 1.1b 2.2a
		(8)	
(c)	As $x_{7}=28225 \Rightarrow(a+1)(4)^{6}-(a+1)(2)^{6}+1=28225$ leading to $\begin{aligned} a & =\ldots \\ a & =6 \end{aligned}$	M1 A1	$\begin{gathered} 3.4 \\ 2.2 \mathrm{a} \end{gathered}$
		(2)	

Notes:

(a) B1: Correct reasoning to derive given result - sufficient working must be shown as recurrence equation given in question
(b) B1: cao for auxiliary equation and corresponding solutions (this mark can be implied by the correct complementary function)

B1: cao for the complementary function
M1: Substitute $x_{n}=\lambda$ into their second order recurrence relation and solve for λ
A1: Correct general solution
M1: Forms one equation in A and B using $x_{1}=1$
B1: Uses original recurrence relation for x_{n+1} to derive the expression $2 a+3$
M1: Setting up a second equation in A and B
A1: cao (oe e.g., $\left.x_{n}=0.25(a+1)(4)^{n}-0.5(a+1)(2)^{n}+1\right)$
(c) M1: Using $x_{7}=28225$ to form a linear equation in a and attempt to solve for a

A1: cao for a

Question	Scheme	Marks	AOs
5 (a)(i) (ii)	$\begin{aligned} & C_{1}=8+11+8+10+6+2=45 \\ & C_{2}=8+17-4-0-1+30+2=52 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	Deduces the maximum possible flow is ≤ 45 litres per second	B1ft	2.2a
		(1)	
(c)	Initial flow $=36$	B1	1.1b
		(1)	
(d)		M1 A1	$1.1 \mathrm{~b}$ $1.1 \mathrm{~b}$
		(2)	
(e)	e.g., SABGT - 2, SCFT -2 , SDCET -2 , SABET -1 e.g., SABGT - 3, SCFT - 2, SDCET - 2	M1 A1 A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(f)	e.g.	B1	2.2a
		(1)	

(g)	Use of max-flow min-cut theorem Identification of cut through $\mathrm{AB}, \mathrm{SB}, \mathrm{BC}, \mathrm{EC}, \mathrm{CF}, \mathrm{DF}$ and DT Value of flow $=43$ Therefore it follows that flow is maximal	M1 A1 A1	$\begin{aligned} & 2.1 \\ & 3.1 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$
		(3)	
(h)	(i)	B1 B1	3.3 3.3
	(ii) maximum flow $=40$	B1ft	2.2a
		(3)	

(16 marks)

Notes:

(a)(i) B1: cao
(ii) B1: cao
(b) B1ft: Deduced from their least value given in (a) - must include 'less than or equal to' (oe)
(c) B1: cao
(d) M1: Two numbers on each arc and at least two arcs or four numbers correct (so correct numbers with the correct arrows)

A1: cao do give bod since they might well cross these numbers out
(e) M1: One flow augmenting route found from S to T

A1: Two correct routes + flow values
A1: cso - increasing the flow by 7
(f) B1: cao
(g) M1: Construct argument based on max-flow min-cut theorem (e.g., attempt to find a cut through saturated arcs)

A1: Use appropriate process of finding a minimum cut: cut + value correct
A1: Correct deduction that the flow is maximal
(h) B1: Flows into B go to B_{IN} and flows out of B go from Bout

B1: Arc of capacity 16 from $B_{\text {IN }}$ to Bout
B1ft: value of their maximum flow - 3

Notes:

(a) B1: cao

Throughout (b):

- Condone lack of destination column and/or reversed stage numbers throughout
- Only penalise incorrect result in value - ie ignore working values
- Penalise absence of state or action column with first two A marks earned only
- Penalise empty/errors in stage column with first A mark earned only
- If maximin, minimum, maximum, etc. then only the B mark and M marks can be awarded in (b) (so 4 out of 9 maximum) and one B mark can be awarded in (c) following through a correct route from their table

M marks in (b) - must bring earlier optimal results into calculations at least once
(b)

B1: Stage 1 correct
M1: Stage 2 completed with 4 states and at least 9 rows. Bod if something in each cell
A1: Any two states in Stage 2 correct
A1: cao all 4 states correct in Stage 2 (no extra rows)
M1: Stage 3 completed with 3 states and at least 8 rows. Bod if something in each cell
A1ft: cao any 2 states correct in Stage 3 on the follow through
A1: cao all 3 states in Stage 3 (no extra rows)
M1: Stage 4 completed with 1 state and at least 3 rows. Bod if something in each cell
A1ft: cao for Stage 4 following through their * values (no extra rows)
(c)

B1ft: One correct route (dependent on first B mark and all M marks in (b)) following through their least values (oe) at each stage in (b)
B1: Both routes correct (dependent on first B mark and all M marks in (b))

7(a)					$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$
		Option X	Option Y	Option Z		
	Option Q	3	-3	1		
	Option R	-2	5	-1		
					(2)	
(b)	If B plays option X, A 's gains are $6 p_{1}+p_{2}=6 p_{1}+\left(1-p_{1}\right)=5 p_{1}+1$ If B plays option Y, A 's gains are $8 p_{2}=8\left(1-p_{1}\right)=-8 p_{1}+8$ If B plays option Z, A 's gains are $4 p_{1}+2 p_{2}=4 p_{1}+2\left(1-p_{1}\right)=2 p_{1}+2$				M1 A1	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
					$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$2+2 p_{1}=8-8 p_{1} \Rightarrow p_{1}=0.6$				A1	1.1b
	Alexis should play option Q with probability 0.6 and option R with probability 0.4				A1ft	3.2a
					(6)	
(c)	Value of the game $=2+2\left(\frac{3}{5}\right)-3=\frac{1}{5}$				B1	2.2a
					(1)	
(d)	$4 q_{3}=\frac{16}{5}, 8 q_{2}+2 q_{3}=\frac{16}{5}$ or $-3 q_{2}+q_{3}=\frac{1}{5}, 5 q_{2}-q_{3}=\frac{1}{5}$				$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$q_{2}=\frac{1}{5}, q_{3}=\frac{4}{5} \Rightarrow$ Becky should play option X never, option Y with probability 0.2 and option Z with probability 0.8				A1	3.2a
					(3)	

Notes:

(a)

M1: Either one correct row or column
A1: cao
SC M1 A0 for $\left(\begin{array}{lll}6 & 0 & 4 \\ 1 & 8 & 2\end{array}\right)$
(b)

M1: Setting up three expressions in terms of p_{1} (either in terms of the original or modified game) or p_{2}
A1: All three expressions correct - or equivalent e.g., $5 p_{1}-2,-8 p_{1}+5,2 p_{1}-1$
M1: Axes correct, at least one line correctly drawn for their expressions
A1: Correct graph
A1: Using a correct graph to obtain the correct probability expressions leading to the correct value of p_{1} or p_{2}
A1ft: Interpret their values in the context of the question - must refer to play and the associated probabilities
(c)

B1: cao
(d)

M1: Setting up two equations in q_{2} and q_{3} with their value of either the original or modified game
A1: Correct two equations
A1: Interpret their values in the context of the question - must refer to play and the associated probabilities

For part (d) candidates might set up three equations in three unknowns
e.g.,
$3 q_{1}-3 q_{2}+q_{3}=\frac{1}{5}$
$-2 q_{1}+5 q_{2}-q_{3}=\frac{1}{5}$
$q_{1}+q_{2}+q_{3}=1$

