

# Mark Scheme (Results)

# Summer 2022

Pearson Edexcel GCE In Further Mathematics (8FM0) Paper 23 Further Statistics 1

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2022 Question Paper Log Number P71967A\* Publications Code 8FM0\_23\_2206\_MS\* All the material in this publication is copyright © Pearson Education Ltd 2022

PMT

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt[]{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

| Question                                                                                                                   |       | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks       | AOs  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--|
| 1                                                                                                                          | .(a)  | (i) $\frac{40 \times 174}{400}$ (ii) $\frac{96 \times 226}{400}$                                                                                                                                                                                                                                                                                                                                                           | M1          | 1.1b |  |
|                                                                                                                            |       | = 17.4 = 54.24                                                                                                                                                                                                                                                                                                                                                                                                             | A1          | 1.1b |  |
|                                                                                                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)         |      |  |
| <ul> <li>(b) H<sub>0</sub>: There is a and the r disease.</li> <li>H<sub>1</sub>: There is a and the r disease.</li> </ul> |       | <ul> <li>H<sub>0</sub>: There is no association between the <b>application</b> of the <b>treatment</b> and the number of <b>years</b> that a fruit tree remains free from this disease.</li> <li>H<sub>1</sub>: There is an association between the application of the treatment and the number of years that a fruit tree remains free from this disease.</li> </ul>                                                      | B1          | 3.4  |  |
|                                                                                                                            |       | $\sum \frac{(O-E)^2}{E} = \frac{(15 - "17.4")^2}{"17.4"} + \frac{(61 - "54.24")^2}{"54.24"} + 2.642$                                                                                                                                                                                                                                                                                                                       | M1          | 1.1b |  |
|                                                                                                                            |       | = 3.815 awrt 3.82                                                                                                                                                                                                                                                                                                                                                                                                          | A1          | 1.1b |  |
|                                                                                                                            |       | $[3.82 <] \chi^2_{2,(0.05)} = 5.991$                                                                                                                                                                                                                                                                                                                                                                                       | B1          | 3.1b |  |
|                                                                                                                            |       | There is no evidence of association between the <b>application</b> of the <b>treatment</b> and the number of <b>years</b> that a fruit tree remains free from this disease.                                                                                                                                                                                                                                                | A1ft        | 2.2b |  |
|                                                                                                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                            | (5)         |      |  |
|                                                                                                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                            | (7 marks)   |      |  |
| Not                                                                                                                        | es:   |                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |  |
| <b>(a)</b>                                                                                                                 | M1    | A correct method to work out either expected frequencies – or 1 correct                                                                                                                                                                                                                                                                                                                                                    |             |      |  |
|                                                                                                                            | A1    | 17.4 and 54.24 (accept 54.2)                                                                                                                                                                                                                                                                                                                                                                                               |             |      |  |
| (b)                                                                                                                        | B1:   | For both hypotheses in terms of "association" or independence" Must mention<br>application/treatment and years in at least one and be connected correctly to H <sub>0</sub> and H<br>[Use of link, relationship or connection. is B0 but allow for last A1ft]                                                                                                                                                              |             |      |  |
|                                                                                                                            |       | A correct method to find the total $\chi^2$ value. ft their values from (a)                                                                                                                                                                                                                                                                                                                                                |             |      |  |
|                                                                                                                            | M1:   | If no method shown at least 1 of the two missing $\chi^2$ contributions must be correct $(0.331\left(\frac{48}{145}\right)$ and 0.8425 allow 2sf). Implied by awrt 3.82                                                                                                                                                                                                                                                    |             |      |  |
|                                                                                                                            | A1:   | awrt 3.82 or awrt 3.83                                                                                                                                                                                                                                                                                                                                                                                                     |             |      |  |
|                                                                                                                            | R1.   | Using the degrees of freedom to find the $\chi^2$ CV for the appropriate mod                                                                                                                                                                                                                                                                                                                                               | del. awrt 5 | .991 |  |
|                                                                                                                            | D1.   | allow 5.9915                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |  |
|                                                                                                                            | A1ft: | Ft "their 3.82" and their CV or <i>p</i> -value. Correct conclusion in context. (application or treatment and years) This is independent of hypotheses ie if they should accept $H_0$ then they need eg there is no association between If they should reject $H_0$ then they need there is an association" Allow relationship, link, connection for association BUT do not accept correlation or contradictory statements |             |      |  |
|                                                                                                                            |       | give the CV as well                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |  |

PMT

| Que                                                                     | estion                                                                              | Scheme                                                                                                                                                          |                                       | Marks       | AOs              |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------------|--|
| 2                                                                       | 2(a)                                                                                | $X \sim Po(3)$                                                                                                                                                  |                                       | M1          | 3.3              |  |
|                                                                         |                                                                                     | P(X = 4) = 0.1680                                                                                                                                               |                                       | A1          | 1.1b             |  |
|                                                                         |                                                                                     |                                                                                                                                                                 | (2)                                   |             |                  |  |
| (                                                                       | <b>(b)</b> $e^{-0.6 \times t} < 0.16$ oe                                            |                                                                                                                                                                 | M1                                    | 3.1b        |                  |  |
|                                                                         |                                                                                     | $-0.6 \times t < \ln 0.16$                                                                                                                                      |                                       | dM1         | 1.1b             |  |
|                                                                         |                                                                                     | [t > 3.054] $t = 3.1$                                                                                                                                           |                                       | A1          | 1.1b             |  |
|                                                                         |                                                                                     |                                                                                                                                                                 |                                       | (3)         |                  |  |
|                                                                         | (c)                                                                                 | $H_0: \lambda = 1.4 \qquad H_1: \lambda > 1.4$                                                                                                                  |                                       | B1          | 2.5              |  |
|                                                                         |                                                                                     | $J \sim \text{Po}(5.6)$                                                                                                                                         |                                       | B1          | 3.3              |  |
|                                                                         |                                                                                     | Method 1                                                                                                                                                        | Method 2                              |             |                  |  |
|                                                                         |                                                                                     | $\mathbf{P}(J \ge 12) = 1 - \mathbf{P}(J \le 11)$                                                                                                               | $P(J \ge 11) = awrt 0.0282$ and       | M1          | 1.1b             |  |
|                                                                         |                                                                                     | 1 0.0275                                                                                                                                                        | $P(J \ge 10) = a \text{ wrt } 0.0591$ |             |                  |  |
|                                                                         |                                                                                     | = 1 - 0.9875                                                                                                                                                    |                                       |             |                  |  |
|                                                                         |                                                                                     | = 0.01(248)                                                                                                                                                     | $J \ge 11$                            | A1          | 1.1b             |  |
| 0.01(24) < 0.05 or $12 > 11$ or $12$ is in the critical region or $125$ |                                                                                     | the critical region or 12 is                                                                                                                                    |                                       |             |                  |  |
|                                                                         | significant or Reject $H_0$ . There is evidence at the 5% level of                  |                                                                                                                                                                 | A1                                    | 2.2b        |                  |  |
|                                                                         |                                                                                     | significance that the <b>rate</b> of fish ca                                                                                                                    | ught may have <b>increased</b> .      | (5)         |                  |  |
|                                                                         |                                                                                     |                                                                                                                                                                 |                                       | (10 n       | narke)           |  |
| Not                                                                     | 66.                                                                                 |                                                                                                                                                                 |                                       | (101        | 1 <b>a</b> 1 K5) |  |
| (a)                                                                     | M1:                                                                                 | Writing or using Po(3)                                                                                                                                          |                                       |             |                  |  |
| ()                                                                      | A1:                                                                                 | awrt 0.168                                                                                                                                                      | awrt 0.168                            |             |                  |  |
|                                                                         | Forming a correct equation from the information given. Condone $e^{-0.6\times t}$ = |                                                                                                                                                                 |                                       |             | 0.16 or finding  |  |
| (b) M1: $P(X = 0)$ for $[t = 3.1] 0.155$ and $[t = 0.155$               |                                                                                     | P(X = 0) for $[t = 3.1] 0.155$ and $[t]$                                                                                                                        | = 3] 0.165 or                         |             |                  |  |
|                                                                         |                                                                                     | $P(X = 0)$ for $[\lambda = 1.84]$ 0.158 and<br>Dependent on the 1st method mark                                                                                 | $[\lambda = 1.83] 0.1604$             | uality/aqua | tion             |  |
|                                                                         | dM1:                                                                                | M1: Dependent on the 1st method mark. A correct method to solve their inequality/equation.<br>Or $[t = 3.05] 0.1604$ or $[\lambda = 1.835] 0.159$               |                                       |             |                  |  |
|                                                                         | A1:                                                                                 | 3.1                                                                                                                                                             |                                       |             |                  |  |
|                                                                         | NB                                                                                  | An answer of 3.1 gains 3/3                                                                                                                                      | An answer of 3.1 gains 3/3            |             |                  |  |
| (c)                                                                     | <b>B1:</b>                                                                          | Both hypotheses in terms of $\lambda$ or $\mu$ . A                                                                                                              | Allow 5.6 instead of 1.4              |             |                  |  |
|                                                                         | <b>B1:</b>                                                                          | Writing or using Po(5.6)                                                                                                                                        |                                       |             |                  |  |
|                                                                         | M1·                                                                                 | For writing or using $1 - P(J \leq 11)$ Im                                                                                                                      | plied by a correct probability or CR  |             |                  |  |
|                                                                         | 17110                                                                               | Allow $P(J \le 10) = a wrt \ 0.972 and \ P(J \le 9) = a wrt \ 0.941$                                                                                            |                                       |             |                  |  |
|                                                                         | A1:                                                                                 | 0.01 or better (allow truncation eg 0.0124)                                                                                                                     |                                       |             |                  |  |
|                                                                         |                                                                                     | <b>NB</b> Allow M1 A1 if $P(J \le 11) = 0.9875$ is written on its own                                                                                           |                                       |             |                  |  |
|                                                                         | A1:                                                                                 | Independent of hypotheses. A correct conclusion based on their probability with 0.05 conclusion in context (bold words) Do not accept contradicting statements. |                                       |             |                  |  |

| Question     |              | Scheme                                                                                                                                                                                                                                                                                                                                                                            | Marks         | AOs    |
|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| <b>3</b> (a) |              | Not all the expected frequencies are likely to be over 5<br>Or the sample size is too small.                                                                                                                                                                                                                                                                                      | B1            | 3.5b   |
|              |              |                                                                                                                                                                                                                                                                                                                                                                                   | (1)           |        |
| (            | ( <b>b</b> ) | <b>5</b> degrees of freedom since the parameter is not estimated from the data [and the totals agree]                                                                                                                                                                                                                                                                             | <b>B</b> 1    | 2.4    |
|              |              |                                                                                                                                                                                                                                                                                                                                                                                   | (1)           |        |
| (            | ( <b>c</b> ) | H <sub>0</sub> : B(5,0.6) is a suitable model<br>H <sub>1</sub> : B(5,0.6) is not a suitable model                                                                                                                                                                                                                                                                                | B1            | 3.4    |
|              |              | $\sum \frac{(O-E)^2}{E} = \frac{(2-5.12)^2}{5.12} + \dots + \frac{(51-38.88)^2}{38.88}$                                                                                                                                                                                                                                                                                           | M1            | 2.1    |
|              |              | = 15.8063 awrt 16                                                                                                                                                                                                                                                                                                                                                                 | A1            | 1.1b   |
|              |              | $[15.8>] \chi^2_{5,(0.05)} = 11.070$                                                                                                                                                                                                                                                                                                                                              | B1ft          | 1.1b   |
|              |              | B(5,0.6) is not a suitable model [for the number of heads spun ]                                                                                                                                                                                                                                                                                                                  | A1ft          | 3.5a   |
|              |              |                                                                                                                                                                                                                                                                                                                                                                                   | (5)           |        |
| ( <b>d</b> ) |              | $\frac{[0\times2] + (1\times27) + (2\times93) + (3\times181) + (4\times146) + (5\times51)}{500} [= 3.19]$                                                                                                                                                                                                                                                                         | M1            | 3.3    |
|              |              | B([5], $p = \frac{3.19}{5} = 0.638$ )                                                                                                                                                                                                                                                                                                                                             | A1            | 1.1b   |
|              |              |                                                                                                                                                                                                                                                                                                                                                                                   | (2)           |        |
| Not          | es:          |                                                                                                                                                                                                                                                                                                                                                                                   | (9 n          | narks) |
| (a)          | B1:          | For recognising the limitations of using a chi squared model on small sample sizes eg 20 is not large, not enough data, sample needs to be larger, you may need to combine cells.                                                                                                                                                                                                 |               |        |
| ( <b>b</b> ) | B1:          | For 5 [dof ] and a correct reason indicating parameter(probability) is not estimated.<br>Condone missing comment about totals                                                                                                                                                                                                                                                     |               |        |
| (c)          | B1:          | Both hypotheses correct Must have B(5,0.6) or binomial with number $(n) = 5$ and probability $(p) = 0.6$ (in at least 1) and be attached to H <sub>0</sub> and H <sub>1</sub> the right way round.                                                                                                                                                                                |               |        |
|              | M1:          | Attempting to find the test statistic $\sum \frac{(O-E)^2}{E}$ (at least two correct expressions, fractions or decimals) or $\chi^2 = \sum \frac{O^2}{E} = \frac{(2)^2}{"5.12"} + \dots + \frac{51^2}{38.88} - 500$ (at least two correct expressions, fractions or decimals plus the - 500) Implied by awrt 15.8                                                                 |               |        |
|              | A1:          | Awrt16                                                                                                                                                                                                                                                                                                                                                                            |               |        |
|              | B1ft:        | Allow 11.07 or awrt 11.070 For correct CV, ft their answer to (b)<br><b>NB</b> dof 3 is 7.815 dof 4 is 9.488                                                                                                                                                                                                                                                                      |               |        |
|              | A1ft:        | Ft "their 11.070" and their CV or $p$ value. A correct conclusion independent of the hypotheses ie [If they should reject H <sub>0</sub> then they need "is not a suitable model.If they should accept H <sub>0</sub> then they need "is suitable"] Allow Binomial is not a suitable model eg condone B(500, 0.6) is not a suitable model. Do not accept contradictory statements |               |        |
|              |              | <b>NB</b> If <i>p</i> value [0.007419] given instead of CV they could get B1M1A1B0A1unless they give the CV as well                                                                                                                                                                                                                                                               |               |        |
| ( <b>d</b> ) | M1:          | For a correct method using the data to improve the model. Implied by 3                                                                                                                                                                                                                                                                                                            | $\frac{.19}{$ |        |
|              | AI:          | Correct model. Condone use of any value of $n$ Accept Binomial with $p = 0.638$                                                                                                                                                                                                                                                                                                   |               |        |

| Ques                                                                                                                                | tion       | Scheme                                                                                                         | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AOs   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| <b>4(a)</b>                                                                                                                         | )(i)       | $E(X) = [0 \times p] + (2 \times 0.25) + 3q + (6 \times 0.4) [= 2.9 + 3q]$                                     | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
| (ii                                                                                                                                 | i) [       | $E(X^{2}) = [0 \times p] + (2^{2} \times 0.25) + 3^{2}q + (6^{2} \times 0.4) [= 15.4 + 9q]$                    | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
| -                                                                                                                                   |            |                                                                                                                | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
| (b                                                                                                                                  | )          | $("15.4+9q") - ("2.9+3q")^2 = 3.66$                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     | -          | $9q^2 + 8.4q - 3.33 = 0 \implies q = 0.3 \text{ and } -\frac{37}{30}$                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     | -          | $q = 0.3^*$ since q cannot be negative                                                                         | A1cso*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4   |  |  |  |
|                                                                                                                                     |            | SC $("15.4+9\times0.3") - ("2.9+3\times0.3")^2$ can get M1M0A0                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | -          |                                                                                                                | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
| (c                                                                                                                                  | :)         | $P(x_1 + x_2 + x_3 + x_4 = 20) = P(6,6,6,2 \text{ or } 6,6,2,6 \text{ or } 6,2,6,6 \text{ or } 2,6,6,6)$       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     | -          | $= 4 \times 0.4^3 \times 0.25$                                                                                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     |            | = 0.064 oe                                                                                                     | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     |            |                                                                                                                | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
| (d                                                                                                                                  | l)         | $P(x_5 + x_6 \ge 7) = P(6,6 \text{ or } 6,3 \text{ or } 6,2)$                                                  | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1a  |  |  |  |
|                                                                                                                                     |            | $= (0.4^{2}) + 2 \times (0.4 \times 0.3) + 2 \times 0.4 \times 0.25  [= 0.6]$                                  | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     |            | $P(\text{score} \ge 27) = "0.064" \times "0.6" [= 24/625 = 0.0384]$                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     |            | $Y \sim B(3, "0.0384")$                                                                                        | dM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3   |  |  |  |
|                                                                                                                                     |            | $\mathbf{P}(Y \ge 1) = 1 - \mathbf{P}(Y = 0)$                                                                  | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1b  |  |  |  |
|                                                                                                                                     |            | = 0.1108                                                                                                       | Alcso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1b  |  |  |  |
|                                                                                                                                     |            |                                                                                                                | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
|                                                                                                                                     |            | Connect connection for $\mathbf{E}(\mathbf{V})$ need not be simplified                                         | (14 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arks) |  |  |  |
| (a)(1)                                                                                                                              | D1;<br>R1. | Correct expression for $E(X^2)$ need not be simplified                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| (h)                                                                                                                                 | M1:        | Correct expression for $E(X^2)$ need not be simplified<br>Using "their $E(X^2)$ " – "their $(E(X))^2$ " – 3.66 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| (~)                                                                                                                                 |            | Rearranging to get a correct 3 term quadratic (condone missing $= 0$ )                                         | leading to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |
|                                                                                                                                     | M1:        | 0.3 and $-37/30$ (awrt $-1.23$ ) or $(10q-3)(30q+37)$                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | A1cso:     | * cso with a comment why $-37/30$ is eliminated. Minimum required is say it is impossible.                     | q > 0 or the formula $q > 0$ or the formul | ney   |  |  |  |
| (c)                                                                                                                                 | M1:        | Realising that combination is 6662. Any order. Implied by $0.4^3 \times 0.2$                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |  |  |
|                                                                                                                                     | M1:        | Correct calculation                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | A1:        | 0.064 oe only eg 8/125                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| (4)                                                                                                                                 | М1.        | Realising all the different combinations 7 or more can be scored from                                          | n 2 games.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . (no |  |  |  |
| ( <b>u</b> )                                                                                                                        | 1011.      | need for arrangements) Implied by $(0.4^2)$ and $(0.4 \times 0.3)$ and $(0.4 \times 0.25)$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | M1:        | Fully correct method.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | M1:        | For multiplying "their (c)" with "their $P(x_5 + x_6 \ge 7)$ " providing at least 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     |            | combinations are used to find $P(x_5 + x_6 \ge 7)$ "                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | dM1.       | Dependent on 3 <sup>rd</sup> M1 being awarded for using or writing                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     |            | B(3, "their P( $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 27$ )") (1-"0.0384") <sup>3</sup> or                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
|                                                                                                                                     | M1:        | For writing or using $1 - P(Y=0) eg (1 - (1 - "0.0384")^3)$                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| A1cso: awrt 0.111 from correct working                                                                                              |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| NB (b) 1 <sup>st</sup> 3 marks                                                                                                      |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| Fully correct method " $0.064$ "× $(0.4^2)$ + $0.064$ × $2$ × $(0.4$ × $0.3)$ + $0.064$ × $2$ × $(0.4$ × $0.25)$ is M1M1M1          |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| All 3 but no arrangements ie " $0.064$ "× $(0.4^2)$ + $0.064$ × $(0.4$ × $0.3)$ + $0.064$ × $(0.4$ × $0.25)$ M1M0M1                 |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| At least 2 combinations used for >7 eg $0.064 \times (0.4 \times 0.3) + 0.064 \times (0.4^2)$ or $2 \times (0.4 \times 0.3)$ M0M0M1 |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom