Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE
A Level Further Mathematics (9FM0)
Paper 3B -Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P69194A*
Publications Code 9FMO_3B_2206_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS
 General Instructions for Marking

1. The total number of marks for the paper is 80 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
5. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response. If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
6. Ignore wrong working or incorrect statements following a correct answer.
7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& \& Scheme \& Marks \& AOs \\
\hline 3 (\& \& (11.2) and \(\mathrm{P}(W \ldots 19)=1-\mathrm{P}(W, 18)\) or suitable 3sf probs 19) \(=0.020776 \ldots\) awrt \(\underline{0.021}\) \& \begin{tabular}{l}
M1 A1 \\
(2)
\end{tabular} \& \[
\begin{gathered}
3.4 \\
1.1 \mathrm{~b}
\end{gathered}
\] \\
\hline (b) \& \& \begin{tabular}{l}
calls per day, \(S \sim \operatorname{Po}(0.4)] \quad \mathrm{P}(S>1)=0.061551 \ldots \quad\) awrt 0.0616 (250, "0.061551..") \\
("15.3879...") [Accept \(\operatorname{Po}(15.4)\) or better] or suitable 3sf probs \(=0.14751 \ldots \quad\) awrt \(\underline{\mathbf{0 . 1 4 8}}\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
(4)
\end{tabular} \& \[
\begin{gathered}
\hline 1.1 \mathrm{~b} \\
3.3 \\
3.4 \\
1.1 \mathrm{~b}
\end{gathered}
\] \\
\hline (c) \& \& \[
\begin{aligned}
\& =16.8 \quad \mathrm{H}_{1}: \lambda<16.8 \\
\& \mathrm{o}(16.8) \\
\& 8)=0.014 \\
\& 4<0.05 \text { or there is sufficient evidence to reject } \mathrm{H}_{0} \text {] } \\
\& \text { is sufficient evidence at the } 5 \% \text { level of significance that the } \\
\& \text { er of calls received per day is lower in winter } \\
\& \text { rate of calls is lower in winter or less calls per day in winter (o.e.) }
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
(4)
\end{tabular} \& 2.5
3.3
1.1 b

2.2 b

\hline (d) \& \& \[
$$
\begin{aligned}
& (0.4 \times n+0.2 \times n)[=\operatorname{Po}(0.6 n)] \text { or } D \sim \mathrm{~B}\left(n, \mathrm{e}^{-0.6} \text { or awrt } 0.549\right) \\
& 0.001 \underline{\text { or }}-0.6 n<\ln (0.001) \text { or } n>11.5 \ldots \\
& \quad \underline{\mathbf{1 2}}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 |
| (3) | \& 3.1 b

1.1 b
1.1 b

\hline (e) \& \& e of calls per day is constant or the number of calls occurring in erlapping time intervals is independent. or number of calls per independent (o.e.) \& \& 2.4

\hline \multicolumn{5}{|r|}{Total 14}

\hline (a) \& $$
\begin{array}{r}
\text { M1 } \\
\text { A1 } \\
\hline
\end{array}
$$ \& \multicolumn{3}{|l|}{For using the model $\operatorname{Po}(11.2)$ implied by sight of: $0.02077 \ldots$ or 0.9889 .. or 0.9792. . awrt 0.021}

\hline (b)

SC \& \[
$$
\begin{array}{r}
\mathrm{B} 1 \\
\mathbf{1}^{\text {st }} \mathrm{M} 1 \\
\mathbf{2}^{\text {nd }} \mathrm{M} 1 \\
\mathrm{~A} 1
\end{array}
$$

\] \& \multicolumn{3}{|l|}{| awrt 0.0616 |
| :--- |
| Setting up a new model B(250, "0.0616") [condone B("0.0616", 250)] |
| Seeing the model $\operatorname{Po}($ their $n p)$ implied by sight of: 0.1475 .. or 0.89975 or $0.8524 \ldots$ |
| awrt 0.148 |
| if no approximation used(and $1^{\text {st }} \mathrm{M} 1$ not seen) an answer of awrt 0.140 could get B1M1M0A0 |}

\hline (c) \& \[
$$
\begin{array}{r}
1^{\text {st }} \mathrm{B} 1 \\
2^{\text {nd }} \mathrm{B} \\
\text { M1 } \\
\\
\\
\text { A1 }
\end{array}
$$

\] \& \multicolumn{3}{|l|}{| Both hypotheses correct using λ or μ and 16.8 or 0.4 [Accept their ans to 0.4×42] Realising $\operatorname{Po}(16.8)$ needs to be used. Sight or use of, implied by correct prob or CR For 0.014 or better ($0.0141 .$.) or CR $X, 9$ oe must be CR and not probability. |
| :--- |
| [Allow $\mathrm{CR} X,, 10$ with probability $\mathrm{P}(X,, 10)=0.054$ or better] |
| Indep of $1^{\text {st }} \mathbf{B} 1$ (must see $2^{\text {nd }} \mathrm{B} 1$ and M1 scored) for a correct inference in context |}

\hline (d) \& $$
\begin{array}{r}
\mathbf{1}^{\text {st } \mathrm{M} 1} \\
\mathbf{2}^{\mathrm{nd}} \mathbf{M 1} \\
\quad \mathbf{A 1}
\end{array}
$$ \& \multicolumn{3}{|l|}{Selecting a suitable model. Sight of $\operatorname{Po}(0.6 n)$ or $\mathrm{B}\left(n, \mathrm{e}^{-0.6}\right)$ or implied by $2^{\text {nd }} \mathrm{M} 1$ For a correct inequality or equality involving n [Condone slips in solving] Allow MR i.e. misread of 0.01 for 0.001 (or similar) to score M1M1A0 $n=12$ cao [Correct answer with no incorrect working seen scores $3 / 3$]}

\hline (e) \& B1 \& \multicolumn{3}{|l|}{Allow equivalent statements. Underlined words required.}

\hline
\end{tabular}

Question	Scheme	Marks	AOs
5	Geo (0.3) $\quad \mu=\frac{1}{0.3}\left[\right.$ or exact equivalent e.g. $\left.\frac{10}{3}\right]$	B1	1.1b
	$\sigma^{2}=\frac{1-0.3}{0.3^{2}}\left[\right.$ or exact equivalent e.g. $\left.\frac{70}{9}\right]$	B1	1.1b
	$\mathrm{CLT} \Rightarrow \bar{X} \approx \mathrm{~N}\left(\frac{10}{3}, \ldots\right)$ oe	M1	2.1
	$\Rightarrow \bar{X} \approx \mathrm{~N}\left(\frac{10}{3}, \frac{7}{135}\right) \quad$ and attempt (sight of) $\mathrm{P}(\bar{X}<3.45)$	M1	3.4
	$=0.69579 \ldots \quad$ awrt $\underline{\mathbf{0 . 6 9 6}}$	A1 (5)	1.1b

Question	Scheme	Marks	AOs
6(a)	$\begin{aligned} \mathrm{G}_{v}(t) & =\frac{9}{25} t^{2}+\frac{12}{25} t^{3}+\frac{4}{25} t^{4} \quad \text { or } \quad t^{2}\left(\frac{9}{25}+\frac{12}{25} t+\frac{4}{25} t^{2}\right) \\ & =t^{2}\left(\frac{2}{5} t+\frac{3}{5}\right)^{2} * \end{aligned}$	M1 $\mathrm{A} 1 * \text { cso }$ (2)	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.1 \end{aligned}$
(b)(i)	$\mathrm{G}_{W}{ }^{\prime}(t)=2 t\left(\frac{2}{5} t+\frac{3}{5}\right)^{4}+\left(\frac{2}{5} t+\frac{3}{5}\right)^{5}$	M1	2.1
	$\left[\mathrm{G}_{W}{ }^{\prime}(1)=\right] \underline{\mathbf{3}}$	A1	1.1b
(ii)	$\mathrm{G}_{W}^{\prime \prime}(t)=2\left(\frac{2}{5} t+\frac{3}{5}\right)^{4}+\frac{16}{5} t\left(\frac{2}{5} t+\frac{3}{5}\right)^{3}+2\left(\frac{2}{5} t+\frac{3}{5}\right)^{4} \mathrm{oe}$	M1	2.1
	$\mathrm{G}_{W}^{\prime \prime}(1)=\frac{36}{5}$	A1	1.1b
	$\operatorname{Var}(W)=$ " $\frac{36}{5} "+" 3 "-(" 3 ")^{2}$	M1	2.1
	$=\frac{6}{5}$	A1	1.1b
		(6)	
(c)	$\mathrm{G}_{X}(t)=t^{2}\left(\frac{2}{5} t+\frac{3}{5}\right)^{2} \times t\left(\frac{2}{5} t+\frac{3}{5}\right)^{5}$	M1	3.1a
	$=t^{3}\left(\frac{2}{5} t+\frac{3}{5}\right)^{7}$	A1	1.1b
		(2)	
(d)	$\mathrm{G}_{Y}(t)=t^{3} \times\left(t^{2}\right)^{3} \times\left(\frac{2}{5} t^{2}+\frac{3}{5}\right)^{7}$	M1	3.1a
	$=t^{9}\left(\frac{2}{5} t^{2}+\frac{3}{5}\right)^{7}$	A1	1.1b
		(2)	
(e)	$\mathrm{P}(Y=15)$ is coefficient of t^{15} ie $\ldots+t^{9} \times{ }^{7} C_{3}\left(\frac{2}{5} t^{2}\right)^{3}\left(\frac{3}{5}\right)^{4}+\ldots$ or $\mathrm{P}(X=6)$ need coefficient of t^{6} i.e. $\ldots+t^{3} \times{ }^{7} C_{3}\left(\frac{2}{5} t\right)^{3}\left(\frac{3}{5}\right)^{4}+\ldots$	M1	1.1b
	$[\mathrm{P}(Y=15)=] \frac{22680}{78125}=\frac{4536}{15625}=0.290304$	A1	1.1b
		(2)	

(14 marks)

Notes:

(a)	$\begin{aligned} & \text { M1 } \\ & \text { A1* } \end{aligned}$	A correct un-simplified pgf based on $\sum t^{\nu} \mathrm{P}(V=v)$ cso must see an un-simplified version i.e. M1 scored and no incorrect working seen
(b) (i)	M1 A1	Differentiating using the product rule to find $\mathrm{G}_{W}{ }^{\prime}(t)$ Allow un-simplified e.g. $5 \times \frac{2}{5} t$ Need two terms added and at least one correct. If they expand we need 3 correct. 3 from a correct derivative
(ii)	$\begin{aligned} & \mathbf{1}^{\mathrm{st}} \mathrm{M} 1 \\ & \mathbf{1}^{\mathrm{st}} \mathrm{~A} 1 \\ & \mathbf{2}^{\mathrm{nd}} \mathrm{M} 1 \\ & \mathbf{2}^{\mathrm{nd}} \mathbf{A} 1 \end{aligned}$	Attempt $\mathrm{G}_{W}{ }^{\prime \prime}(t)$ ft their $\mathrm{G}_{W}{ }^{\prime}(t)$ [must be at least 2 terms or a product], one correct ft term, same rule for differentiating a product $\frac{36}{5}$ or 7.2 from a correct derivative $\mathrm{G}_{W}{ }^{\prime \prime}(1)+\mathrm{G}_{W}{ }^{\prime}(1)-\left(\mathrm{G}_{W}{ }^{\prime}(1)\right)^{2}$ ft their $\mathrm{G}_{W}{ }^{\prime \prime}(t)$ if different from $\mathrm{G}_{W}{ }^{\prime}(t)$ and $\mathrm{G}_{W}(t)$ Dep on M3A2 $\frac{6}{5}$ or 1.2
(c)	M1 A1	Realising the need to use $\mathrm{G}_{X}(t)=\mathrm{G}_{V}(t) \times \mathrm{G}_{W}(t)$ $t^{3}\left(\frac{2}{5} t+\frac{3}{5}\right)^{7}$
(d)	M1 A1	$t^{9}\left(\frac{2}{5} t^{2}+\frac{3}{5}\right)^{7}$ oe Need not be in its simplest form
(e)	M1 A1	Attempting to find correct coefficient of t^{n} or identify $Y=2 J+9$ where $J \sim \mathrm{~B}(7,0.4)$ Need an expression can ft their $\mathrm{G}_{Y}(t)$ or $\mathrm{G}_{X}(t)$ of the form $t^{n}\left(a t^{m}+b\right)^{k}$ Allow a statement that $\mathrm{P}(Y=15)=0$ if it follows from their pgf For a correct exact answer or allow awrt 0.2903 Allow 0.29 from correct expression

Alternative for (b)

(b) $\quad W=P+1$ where $P \sim \mathrm{~B}(5,0.4)$ so $\operatorname{Var}(W)=\operatorname{Var}(P)$
(i)
(ii)

$\mathrm{G}_{P}{ }^{\prime}(t)=2\left(\frac{2}{5} t+\frac{3}{5}\right)^{4}$	M 1	2.1
$\mathrm{G}_{W}{ }^{\prime}(1)=2+1=3$	A 1	1.1 b
$\mathrm{G}_{P}{ }^{\prime \prime}(t)=\frac{16}{5}\left(\frac{2}{5} t+\frac{3}{5}\right)^{3} ; \mathrm{G}_{P}{ }^{\prime \prime}(1)=\frac{16}{5}$	$\mathrm{M} 1 ;$	2.1
$\operatorname{Var}(W)={ }^{\prime \prime} \frac{16}{5} "+" 2 "-(" 2 ")^{2} ;=\frac{6}{5}$	A 1	1.1 b

MR They use $\mathrm{G}_{V}(t)$ instead of $\mathrm{G}_{W}(t)$ Provided some correct differentiation seen:
SC
Award B1 for $\mathrm{E}(V)=\frac{14}{5}$ and B 1 for $\operatorname{Var}(V)=\frac{12}{25}$ score as M0A1M0A0M0A1

Question	Scheme	Marks	Aos
7(a)	$\bar{X} \sim \mathrm{~N}(1000,90) \quad$ (May be implied by correct prob or z value seen) $\mathrm{P}(\bar{X}>1020)=0.0175 \ldots \text { or } z=2.108$ $0.0175 \ldots<0.025$ or $z=2.108 \ldots>1.96$ therefore reject H_{0}. There is evidence that the mean weight of the flour in a bag is not 1000 g or evidence of a change in mean weight of flour in a bag	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { cso } \end{aligned}$ (4)	$\begin{gathered} 3.3 \\ 3.4 \\ 1.1 \mathrm{~b} \\ 2.2 \mathrm{~b} \end{gathered}$
(b)	$\begin{aligned} {\left[\bar{Y} \sim \mathrm{~N}\left(1000, \frac{900}{n}\right) \Rightarrow\right] \frac{c-1000}{30 / \sqrt{n}} } & =1.6449 \\ \quad c & =1000+\frac{49.347}{\sqrt{n}} \end{aligned}$	M1 A1 (2)	3.4 1.1 b
(c)	$\begin{aligned} & \frac{" 1000+\frac{49.347}{\sqrt{n}} "-1020}{30 / \sqrt{n}}=-2.5758 \\ & \frac{126.621}{\sqrt{n}}=20 \quad \text { or } \\ & \begin{array}{cl} n=\underline{40} & \frac{49.34 \ldots}{c-1000}=\frac{-77.274}{c-1020} \\ c=1007.8 \ldots & \text { (Allow 2sf accuracy) } \\ \\ \hline \end{array} \\ & \end{aligned}$	M1 A1ft dM1 A1 A1 (5)	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \\ \\ 1.1 \mathrm{~b} \\ 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$

Notes:

