

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE AL Further Mathematics (9FM0) Paper 4C Further Mechanics 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P72114A* Publications Code 9FM0_4C_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Que	stion	Scheme	Marks	AOs			
1	(a)	Moments about y-axis	M1	3.4			
		$\left(\left(5+k\right)m\overline{x} = -3kma + 6ma + 3ma\right) \qquad \overline{x} = \frac{\left(9-3k\right)a}{5+k}$	A1	1.1b			
		Moments about x-axis	M1	3.4			
		$\left(\left(5+k\right)m\overline{y} = 4kma + 4ma - 12ma\right) \overline{y} = \frac{\left(4k-8\right)a}{5+k}$	A1	1.1b			
			(4)				
		$\Rightarrow 9\left[\left(9-3k\right)^2 + \left(4k-8\right)^2\right] = \left(5+k\right)^2$	M1	3.1a			
		$\left(224k^2 - 1072k + 1280 = 0\right)$					
		$\Rightarrow k = \frac{5}{2}, \text{ or } k = \frac{16}{7}$	Al	2.2a			
			(2)				
(b)						
			(6 n	narks)			
Note	es:						
(a)							
M1	Allo	then the equation to find \overline{x} – need all terms and dimensionally correct w with <i>m</i> cancelled throughout w if they have a common factor of <i>g</i>					
A1	Corr	ect expression for \overline{x} equivalent form. Allow recovery					
M1	Allo	nents equation to find \overline{y} – need all terms and dimensionally correct w with <i>m</i> cancelled throughout w if they have a common factor of <i>g</i>					
A1 Correct expression for \overline{y} Any equivalent form. Allow recovery							
(b)							
M1		their moments equations to form a quadratic equation in k only with no simplify)	square root	(need			
A1		btain both correct values. ccept 2.5 and 2.3 or better (2.2857)					

Question	Scheme	Marks	AOs				
2 (a)	Use of $P = Fv$	B1	3.3				
	Equation of motion $(F-3v^2=60a)$	M1	2.1				
	$\frac{200}{v} - 3v^2 = 60v\frac{\mathrm{d}v}{\mathrm{d}x}$	A1	2.5				
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{200 - 3v^3}{60v^2} *$						
		(4)					
2(b)	$\Rightarrow \int \frac{60v^2}{200-3v^3} dv = \int 1 dx \left(-\frac{60}{9}\ln\left(200-3v^3\right) = x(+C)\right)$	M1	1.1b				
	$D = \left[-\frac{60}{9} \ln \left(200 - 3v^3 \right) \right]_2^4 = -\frac{60}{9} \ln \left(\frac{200 - 3 \times 64}{200 - 3 \times 8} \right)$	M1	1.1b				
	$=\frac{60}{9}\ln\frac{176}{8}=\frac{60}{9}\ln 22$	A1	1.1b				
		(3)					
		(7)					
		(7 n	narks)				
Notes:							
(a)							
B1	Seen or implied Not just quoted. Need at least $200 = Fv$ Could be on its own, in an equation or on a diagram						
M1	Form equation of motion. Need all terms and dimensionally correct. C correct form for acceleration and sign errors Allow with <i>m</i> not substituted	ondone any	7				
Al	Correct equation - any equivalent form with correct acceleration						
A1*	Obtain given answer from correct working Must be as written in the question but could swap LHS and RHS						
(b)							
M1	Separate variables and integrate to obtain $(x =)k\ln()$ (Constant of integration not required) Condone if the x is not explicitly stated but M0 if it is an incorrect function.						
M1	Use limits correctly in an expression containing $k \ln (200 - 3v^3)$ to find	D					

	Substitute and subtract in the correct order
	Obtain exact answer from correct working
A1	Any equivalent single term
	No working seen is Max M1M0A0

Question	Scheme								Marks	AOs			
3 (a)	Moments abo	ut AC:								M1	3.1a		
	rod	CD	DE	EF	FA	AB	BC	BF		F CF	·		
	Mass ratio	4	4	5	5	3	3	8	6	5 10			
	From AC	2 <i>a</i>	6 <i>a</i>	6 <i>a</i>	2 <i>a</i>	0	0	2 <i>a</i>	40	a 2a			
	$8a \times 4a + 2 \times 3$	$a \times 4a$ -	$+2 \times 5a$	$\times 2a+1$	$0a \times 4a +$	$2 \times 4a$	$\times 2a =$	$48a\overline{x}$		A1	1.1b		
										A1	1.1b		
	$\left \begin{array}{c} \left(132a = 48\overline{x} \right) \right. \right.$	$\Rightarrow \overline{x} =$	$\frac{11}{4}a$							A1	1.1b		
										(4)			
(b)	Moments abo	ut <i>F</i> :								M1	3.1a		
	Mg($4a-\overline{x}$	= kMg	$\times 4a$						Alft	1.1b		
		$\Rightarrow k = -\frac{1}{1}$	5							A1			
									(3)				
	Moments about C:							M1					
	4a(M+kM)	$=M \overline{x}$	+8 <i>akM</i>							Alft			
	:	$\Rightarrow k = \frac{1}{1}$	5							A1	1.1b		
										(3)			
										(7 r	narks)		
Notes:													
(a)M1	 Dimensionally correct equation for moments about AC or a parallel axis. All terms needed and horizontal distances Must be using the mass ratio. Allow slips, but not consistently density and not consistently lengths. Condone without a 							IS					
A1	One side of the	-							-				
Al	Both sides of th	-		rect									
Al	Or equivalent s Condone if <i>a</i> is	-		workir	ng and ap	pears	at the e	nd					
(b)M1	Dimensionally M and kM to ob Condone if g an Condone incorr Condone if use	otain an nd / or l rect dist	equation M cance tances	on in k of the set	only.	-	ny comj	olete alte	rnativ	ve method	l using		

A1	Correct unsimplified equation (accept without g and/or M) Correct mass and distance combination for their \overline{x}
A1	Or 0.3125 Condone 0.31 or 0.313

Question	Scheme	Marks	AOs			
4(a)	$ \begin{array}{c} B \\ 6a \\ A \\ r \\ T \\ mg \end{array} $					
	Resolve vertically	M1	3.4			
	$T\cos\theta = mg$	A1	1.1b			
	$T = \left(\frac{mg}{\cos\theta} = \frac{6.8mg}{6}\right) = \frac{17mg}{15}$	A1	1.1b			
		(3)				
4(b)	Equation of motion	M1	3.1b			
	$mr\omega^{2} = T + T\sin\theta \left(m \times 3.2a\omega^{2} = their T\left(1 + \frac{8}{17}\right)\right)$	A1 A1	1.1b 1.1b			
	Solves for ω or ω^2	M1	1.1b			
	$\boxed{\left(\frac{r\omega^2}{g} = \frac{1+\sin\theta}{\cos\theta} = \frac{6.8+3.2}{6}, \omega^2 = \frac{10g}{6\times3.2a}\right) \qquad \omega = \sqrt{\frac{25g}{48a}} = \frac{5}{4}\sqrt{\frac{g}{3a}}}$	A1	1.1b			
		(5)				
		(8 n	narks)			
Notes:						
(a)M1	Need all terms. Condone sin/cos confusion					
A1	Correct unsimplified equation.					
A1	Correct answer only 1.1mg or better (1.13mg) Do not ignore subsequent working if they try to combine this with a tension in AR					
(b)M1	Equation for circular motion. Need all terms and dimensionally correct. Condone sin/cos confusion and sign errors. Any correct form for acceleration					
A1 A1	Unsimplified equation with at most one error Correct unsimplified equation					

PMT
1 1011

	Allow M1A1A0 for $mr\omega^2 = T' + (their(a))\sin\theta$
M1	Clear attempt to substitute for trig and tension or divide their two equations to solve for ω or ω^2 in terms of <i>a</i> and <i>g</i> Independent M mark but requires an equation using tension and trig.
A1	Any equivalent form $0.72\sqrt{\frac{g}{a}}$ or better (0.7216)

Question			Scheme			Marks	AOs
5(a)	Using sector: c	B1	1.1b				
	Using Pythago Or using trigor	M1	2.1				
		A1*	2.2a				
						(3)	
5(a) alt	Using semiciro) 3a C				B1	1.1b
	Moments abou	Moments about diameter: $\frac{9\pi a^2}{2} \times \frac{4a}{\pi} = 2 \times \frac{9\pi a^2}{4} \times d$					2.1
			$\Rightarrow d = \frac{4}{7}$	<u>a</u> *		A1*	2.2a
						(3)	
(b)	Mass ratio From FC	$ \begin{array}{c} ABCO \\ 9 \\ -\frac{3a}{2} \end{array} $	$ODEF$ 9 $\frac{3a}{2}$	$\begin{array}{c} ODC \\ \\ \frac{9\pi}{4} \\ \\ \\ \underline{4a} \end{array}$		B1	1.2
	Moments abou		2	π		M1	3.1a
	$\frac{-9 \times \frac{3a}{2} + 9 \times \frac{3}{2}}{2}$		$=\left(18+\frac{9\pi}{4}\right)\overline{x}\left($	=9a)		A1	1.1b
	$\overline{x} = \frac{4a}{8+\pi}$						1.1b
						(4)	

(b) alt		ABCO	ODEF	ODC			
(b) att	Mass ratio	9	9	$\frac{9\pi}{4}$		1.2	
	From BOE	0	0	$\frac{4\sqrt{2}a}{\pi}$	- B1		
	Moments abou	ıt BOE:			M1	3.1a	
	$\left(18 + \frac{9\pi}{4}\right)d =$				A1	1.1b	
	$\overline{x} = d\cos 45^\circ$	$=\frac{4a}{8+\pi}$			A1	1.1b	
					(4)		
(c)	$\overline{y} = \frac{4a}{8+\pi}$ from	m <i>OD</i> or \overline{y} :	$=3a+\frac{4a}{8+\pi}$ f	rom <i>FE</i>	B1ft	1.1b	
	Complete met	hod to find a	relevant ang	le	M1	3.1a	
	$\theta^{\circ} = \tan^{-1}\left(\frac{1}{3a}\right)$	$\left(\frac{\overline{x}}{\overline{y}}\right) = \tan^{-1}$	$\left(\frac{4a}{28a+3\pi a}\right)$		Alft	1.1b	
		l	$\theta = 6.1$		A1	1.1b	
					(4)		
					(1	l marks)	
Notes:							
(a)B1	Correct application Must substitute for Implied if you se	or α but need	l not simplify	formula bookle	et.		
M1 Correct strategy to find the distance for the quadrant Need to see use of $\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ somewhere in the solution							
A1*	Obtain the given result from correct working.						
(b)B1	Correct masses a Seen or implied the two squares c	(a bright can	didate might		<i>BOE</i> king moments about <i>F</i> (C then	
M1	Moments about <i>I</i> correct. Condone Accept as part of	e sign errors.		DE. All terms re	equired, and dimensiona	ılly	

A1	Correct unsimplified equation for their axis
A1	Or equivalent with no errors seen
	Accept 0.36 <i>a</i> or better (0.3590 <i>a</i>)
	Allow use of symmetry seen or implied.
$() \mathbf{D} 1 0$	Accept $\overline{y} = \overline{x}$
(c)B1ft	(From FE, $\overline{y} = \frac{28a + 3\pi a}{8 + \pi}$) Accept +/-
	Correct strategy to find a relevant angle
M1	$(\theta \text{ or } 90 - \theta)$ Need to substitute their values of \overline{x} and distance from $F \neq \frac{4a}{\pi}$.
A1ft	Correct unsimplified expression for a relevant angle. Follow their \overline{x} and \overline{y}
	6.1 or better (6.10067)
A1	The question defines θ as measured in degrees. 0.106 can score B1M1A1ftA0
	Do not ISW

Question	Scheme	Marks	AOs
6(a)	Mass of cone = $\int_{0}^{9} \pi y^2 \lambda x dx = \pi \lambda \int_{0}^{9} \frac{x^3}{9} dx$	M1	3.4
	$= \pi \lambda \left[\frac{x^4}{36} \right]_0^9 \left(= \frac{729\pi\lambda}{4} (\text{kg}) \right)$	A1	1.1b
	Moments: $\int_{0}^{9} \pi y^{2} \lambda x \times x dx = \pi \lambda \int_{0}^{9} \frac{x^{4}}{9} dx$	M1	3.4
	$=\frac{\pi\lambda}{45} \left[x^5\right]_0^9 \left(=\frac{\pi\lambda}{5} \times 9^4\right)$	A1	1.1b
	$\Rightarrow d = \frac{\frac{\pi\lambda}{5} \times 9^4}{\frac{\pi\lambda}{4} \times 9^3}$	DM1	2.1
	$d = \frac{36}{5} = 7.2 (\text{cm})$	A1	1.1b
		(6)	
(b)	Remains at rest \Rightarrow centre of mass at centre of plane surface	B1	2.1
	Moments about diameter of plane surface:	M1	3.1b
	$(9-d)W\left\{=\left(9-\frac{36}{5}\right)W\right\}=\frac{3}{8}\times3\times kW$	A1ft	1.1b
	$k = \frac{8}{5}$	A1	1.1b
		(4)	
		(10 n	narks)
Notes:			
(a)	NB: Some candidates are confusing the mass and the volume. For the f - If they have a correct method for the mass and they tell you that this i marks. - If they have a correct method for the mass say nothing, but use it corr	s mass, awa	
	marks. - If they have a correct method for the mass, say nothing, and use it as t M0 because this implies that they do not think it is the mass.	the moment	, then
M1	Use the model to find the mass of the cone. Allow without limits.		
	Correct integration. Correct limits seen or implied Substitution not required.		

	Allow 2/2 if π not seen and consistent with (b) if attempted
M1	Use the model to find the moment of the cone (usual rules for integration) Allow without limits
A1	Correct integration. Correct limits seen or implied Substitution not required. Allow 2/2 if π not seen and consistent with (a)
M1	 Complete method to find the distance of the centre of mass from the vertex. A complete method requires the two preceding M marks. They need to get as far as a value for <i>d</i>. If they have a method that comes directly to this stage you might not see the λ or π
A1	Correct only If all you see is $\Rightarrow d = \frac{9^5}{45} \div \frac{9^4}{36}$ or even $\Rightarrow d = \frac{9}{5} \times 4$ then award 6/6 Allow 6/6 if π not seen throughout but otherwise correct
(b)B1	Correct deduction for location of c of m Stated or implied by their moments equation
M1	Moments about diameter of plane face(s) M0 if the moments equation contradicts the centre of mass being on the interface M0 if using volume in place of mass
A1ft	Correct unsimplified equation. Follow their 7.2 Alternative moments equations: Using vertex: $W\overline{x} + kW\left(9 + \frac{3}{8} \times 3\right) = (W + kW) \times 9$ Using base: $W(12 - \overline{x}) + kW\left(3 - 3 \times \frac{3}{8}\right) = (W + kW)3$ If they are working with the axis at an angle they will possibly have trig terms which should cancel.
Al	Correct only

	Scheme	Marks	AOs
7(a)	Conservation of energy:	M1	3.1b
	$\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mg \times \frac{2a}{5}(1 - \cos\theta)$	A1	1.1b
	Equation of motion towards O	M1	3.1b
	$T - mg\cos\theta = \frac{5mv^2}{2a}$	A1	1.1b
	Complete method to find T in terms of u , a and θ	DM1	2.1
	$T = mg\cos\theta + \frac{5m}{2a}\left(u^2 - \frac{4a}{5}g(1 - \cos\theta)\right)$ $= 3mg\cos\theta - 2mg + \frac{5mu^2}{2a} *$	A1*	2.2a
		(6)	
(b)	Require $T \ge 0$ when $\theta = \pi : \frac{5mu^2}{2a} \ge mg(2+3)$	M1	2.1
	$u^2 \ge 2ag$, minimum $u = \sqrt{2ag}$	A1	1.1b
		(2)	
(c)	$\theta = \frac{\pi}{2}, u = 2\sqrt{ag} \implies T = -2mg + \frac{5m}{2a} \times 4ag$	B1	1.1b
	⁸ g g		
	Magnitude of acceleration $=g\sqrt{64+1}$	M1	2.1
	$=\sqrt{65}g$	A1	1.1b
		(3)	
(d)	Consider the uniformity / dimensions of the package String might be extensible. include the weight of the string	B1	3.5c
		(1)	

	(12 marks)
Notes:	
(a)M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
	Allow with $\frac{2a}{5}\cos\theta$ in place of $\frac{2a}{5}(1-\cos\theta)$
A1	Correct unsimplified equation
M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
A1	Correct unsimplified equation
M1	Complete method, e.g. using conservation of energy and the circular motion, to form sufficient equations to obtain an expression without v
	A complete method requires the two preceding M marks.
A1*	Obtain given result from correct working
(b)M1	Identify correct condition for complete circle and solve for <i>u</i> . Condone working from $T = 0$
A 1	Allow $u \ge \sqrt{2ag}$
A1	Condone $u > \sqrt{2ag}$, and $u = \sqrt{2ag}$
(c)B1	Correct <i>T</i> or v^2 seen or implied
M1	Use of Pythagoras with their horizontal component of acceleration
A1	Correct only, or $8.1g$ ($8.062g$) or better
	Any valid suggestion relating to the model.
(d) B1	Allow negatives of statements within the model
	e.g. not model the package as a particle. B0 if multiple suggestions including one incorrect.
	B0 for accuracy of g as this is not part of the description of the model.

Question	Scheme	Marks	AOs
8(a)	At equilibrium: $0.5g = \frac{25e}{1.25}$, $e = \frac{0.5 \times 10 \times 1.25}{25} = \frac{1}{4}$	B1	3.3
	For taut string, when distance x from equilibrium, equation of motion	M1	2.1
	Alternative for M1: Conservation of energy using a known point (<i>E</i> or <i>B</i>) and a general position: From <i>E</i> : $\frac{25e^2}{2 \times 1.25} + KE$ (constant $\neq 0$) + 0.5 $gx = \frac{25(e+x)^2}{2 \times 1.25} + \frac{1}{2}0.5v^2 + 0$ (GPE) and differentiate wrt <i>x</i> for M1 $\Rightarrow 0.5g = \frac{25(e+x)}{1.25} + \frac{1}{2}v\frac{dv}{dx}$		
	$\frac{25(e+x)}{1.25} - 0.5g = -0.5\ddot{x}$	A1ft	1.1b
	$\ddot{x} = -40x$ hence SHM*	A1*	2.2a
	Periodic time:	M1	3.4
	$T = \frac{2\pi}{\sqrt{40}} = \frac{\pi}{\sqrt{10}} *$	A1*	2.2a
		(6)	
(b)	Max KE = $2.5 = \frac{1}{2} \times \frac{1}{2} \times \max v^2 \implies \max v^2 = 10$	B1	1.2
	Max speed = $a\omega$: $\sqrt{10} = a\sqrt{40}$	M1	3.4
	$AB = 1.25 + \frac{1}{4} + \frac{1}{2} = 2(m) *$	A1*	1.1b
		(3)	
(b) alt	Energy: $\frac{25e^2}{2.5} + 2.5 + 0.5ga = \frac{25(e+a)^2}{2.5}$	B1	
	Solve for <i>a</i>	M1	
	$AB = 1.25 + \frac{1}{4} + \frac{1}{2} = 2(m) *$	A1*	1.1b
		(3)	
(c)	$a = 0.5, x = 0.5 \cos \sqrt{40t}$	B1	2.2a
	$-0.25 = 0.5 \cos \sqrt{40t} \Longrightarrow t = 0.3311$	M1	3.1a
	$v^2 = 40(0.5^2 - 0.25^2) = \frac{15}{2}$	M1	3.4
	Total time = $2 \times 0.3311 + \frac{2 \times \sqrt{7.5}}{10}$	DM1	3.1a
	=1.2(s) or better	A1	2.2a

		(5)	
		(14)	marks)
Notes:	1		
(a)B1	Correct only Award if see $mg = \frac{\lambda e}{l}$ used in their equation of motion		
M1	Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \ddot{x}		
	Correct unsimplified equation with their <i>e</i> or $e \neq 0$.		
A1ft	Could have the negative of the whole equation or x replaced with $-x$ throughout		
A1*	Reach given conclusion from correct working. Condone correct conclusion without explanation		
M1	Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$		
	From an equation of the form $\ddot{x} = -\omega^2 x$		
A1*	Obtain given answer from correct working throughout. Available if only error is not to conclude SHM		
(b)B1	Use the KE to find $\max v$ or $\max v^2$		
M1	Use the model to find the amplitude of the motion		
A1*	Obtain the given answer from correct working.		
(b) alt B1	Using correct λ and l and e or their e		
M1	Requires an energy equation with all the right terms		
A1*	Obtain the given answer from correct working.		
(c) B1	Correct equation for SHM seen or implied		
	Find the time until the string goes slack		
M1	If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$		
M1	Use the model to find v or v^2 at the instant the string goes slack ($v = 2$.) Using SHM formula or conservation of energy	738)	
M1	Using SHM formula or conservation of energy.Complete method to find the total time until return to BRequires the preceding M marks		

	If they use suvat to find the time as a projectile it must be a complete method e.g. $\sqrt{\frac{15}{2}} = -\sqrt{\frac{15}{2}} + gt$ or a combination of $v^2 = u^2 + 2as$ and $s = ut + \frac{1}{2}at^2$
A1	=1.2(s) or better Condone an answer to > 2 s.f. Not scored if they have used 9.8.