(P) Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 02 Advanced Organic and Physical
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2022
Question Paper Log Number P67904RA
Publications Code 9CHO_02_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1(a)	The only correct answer is A (\mathbf{B} is not correct because there is no $\mathrm{C}=\mathrm{C}$ in the repeat unit C is not correct because the extension bonds are not from the correct carbon atoms of the chain and there should not be a $C=C$ in the repeat unit D is not correct because the extension bonds are not from the correct carbon atoms of the chain	(1)

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is B (generation of biodegradable materials)	(1)
	\boldsymbol{A} is not correct because some poly(alkenes) may be used as a feedstock for cracking	
C is not correct because some poly(alkenes) may be used for energy from incineration		
	\boldsymbol{D} is not correct because some poly(alkenes) may be used for recycling to make new materials	

Question Number	Answer	Mark
1(c)	The only correct answer is B ($\left[0-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{C}-\mathrm{C}\right] \quad$) \boldsymbol{A} is not correct because there is an additional oxygen atom in the repeat unit C is not correct because there is an incorrect number of CH_{2} groups in one of the monomers and there is an additional oxygen atom in the repeat unit D is not correct because there is an incorrect number of CH_{2} groups in one of the monomers	(1)

Question Number	Answer	Mark
$\mathbf{1 (d)}$	The only correct answer is D (use a higher temperature for a faster reaction rate)	(1)
	A is not correct because efficient use of energy does contribute to sustainability	
B is not correct because efficient use of resources does contribute to sustainability		
C is not correct because use of catalysts do contribute to sustainability		

Question Number	Answer	Additional Guidance	Mark
2(a)	An answer which makes reference to:	(1) Allow absence of 'only' Allow substance/molecule/chain/species for compound	
	•a compound of hydrogen and carbon only	Do not award reference to a carbon and/or a hydrogen Do not award 'an element made of carbon and hydrogen' Do not award a mixture of carbon and hydrogen Do not award contains carbon and hydrogen molecules	

| Question
 Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :--- | :--- | :---: |
| 2(b) | An explanation which makes reference to the following points: | Accept reverse argument | (2) |
| | • branching results in fewer/weaker London forces | $\mathbf{(1)}$ | Allow van der Waals / instantaneous
 dipole-induced dipole / dispersion
 forces
 Ignore just intermolecular forces |
| • due to less surface area/points of contact | $\mathbf{(1)}$ | Do not award 'fewer electrons'
 Do not award if covalent bonds broken
 Allow reference to less close packing of
 molecules together | |

Question Number	Answer	Mark
2(c)	The only correct answer is D (ions) \boldsymbol{A} is not correct because both anions and cations are produced \boldsymbol{B} is not correct because homolytic fission produces free radicals \boldsymbol{C} is not correct because homolytic fission produces free radicals and heterolytic fission also produces anions	(1)

Question Number	Answer	Additional Guidance	Mark
3(a)(i)	- curly arrow from $\mathrm{C}=\mathrm{C}$ to chlorine and curly arrow from $\mathrm{Cl}-\mathrm{Cl}$ to 'bottom' chlorine atom(1) - structure of carbocation intermediate and structure of final product - chloride ion with lone pair and curly arrow from lone pair to C+ of carbocation (1)	Example of mechanism: Ignore dipoles even if incorrect Allow correct structural/displayed formulae for intermediate and/or product Allow TE on incorrect primary carbocation	(3)

Question Number	Answer	Additional Guidance	Mark
3(a)(ii)	• 1,2-dichloro-2-methylbutane	Allow name shown on mechanism Ignore missing hyphens and commas	(1)
		Do not allow 2-methyl-1,2-dichlorobutane	
		TE on structure in (a)(i) Allow correct name even if incorrect structure in (i)	

Question Number	Answer	Mark
$\mathbf{3 (b)}$	The only correct answer is A (primary) \boldsymbol{B} is not correct because there is no chlorine atom bonded to a carbon atom which is bonded to two other carbon atoms C is not correct because there is no chlorine atom bonded to a carbon atom which is bonded to three other carbon atoms D is not correct because both chlorine atoms are bonded to carbon atoms which are bonded to only one carbon atom	(1)

Question Number	Answer	Additional Guidance	Mark
4(a)(i)	- evaluation of number of moles of nitrogen - conversion of pressure and temperature to correct units (1) - rearrangement of ideal gas equation so $V=n R T \div P$ and evaluation of volume - answer converted into cm^{3}	Example of calculation: $\begin{aligned} & \mathrm{n}=0.42 \div 28=0.015(\mathrm{~mol}) \\ & 120 \mathrm{kPa}=120000 \mathrm{~Pa}, \\ & 20^{\circ} \mathrm{C}=293 \mathrm{~K} \\ & \mathrm{~V}=\frac{0.015 \times 8.31 \times 293}{120000} \\ & =3.0435 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \\ & =3.0435 \times 10^{-4} \times 10^{6} \\ & =304\left(\mathrm{~cm}^{3}\right) \end{aligned}$ Ignore SF except 1SF TE throughout Correct answer without working scores (4)	(4)

Question Number	Answer	Additional Guidance	Mark
4(a)(ii)	An answer that makes reference to	Allow answers such as 'keep the crisps fresh' or 'prevents the crisps from going off/stale' Allow reference to 'crisps not reacting with nitrogen but will with air'	
	• prevents oxidation (of the crisps)	Ignore reference to gas prevents crisps from getting squashed/broken	
		Ignore nitrogen is less reactive than air/oxygen or nitrogen is inert	

Question Number	Answer	Additional Guidance	Mark
4(b)	- dot-and-cross diagram of nitrogen gas - dot-and-cross diagram of nitride ion	Example of dot-and-cross diagrams Allow electrons to be paired horizontally Allow the crosses to be paired in any way Allow representation of inner shell with two electrons Allow any pairing of dots and crosses Ignore lines representing covalent bonds Ignore missing circles Ignore absence of brackets and charge on nitride ion Ignore any diagram of the sodium ion	(2)

Question Number	Answer	Additional Guidance	Mark
4(c)	An explanation that makes reference to the following points: - the lone pair (of electrons) in ammonia repels more than the bonded pairs (of electrons) The further three marks are scored as follows: Six of the following scores (3) four or five scores (2) and two or three scores (1) - the ammonia molecule has three bond pairs and one lone pair - the ammonium ion has four bond pairs - the ammonia molecule is (trigonal) pyramidal - ammonium ion is tetrahedral - the bond angle in ammonia is $107\left({ }^{\circ}\right)$ - the bond angle in the ammonium ion is $109.5\left({ }^{\circ}\right)$	Standalone mark Accept points made on labelled diagrams	(4)

Question Number	Answer	Additional Guidance	Mark
4(d)	An explanation that makes reference to the following points: - nucleophiles are electron pair donors / attack areas of low electron density / the nitrogen donates its lone pair of electrons - so the amine group attacks as a (nucleophile) by attacking the $\mathrm{C}^{\delta+}$ of the acyl chloride - which produces hydrogen chloride - it's a base because amine group reacts with the acid / protons (to produce the salt / $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3} \mathrm{Cl}$)	Allow the $\mathrm{N} /$ butylamine for 'the amine group' Allow shown in a mechanism Do not award attacks carbocation Allow hydrochloric acid Allow the N/ butylamine for 'the amine group' Allow base is a proton acceptor Do not award just 'hydrogen' for proton Do not award reference to ethanoyl chloride as an acid/donating a proton	(4)

(Total Question 4 = 15 marks)

Question Number	Answer	Additional Guidance	Mark
5(a)	An answer which makes reference to the following points: - density between 0.92 and $1.00\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	Accept any value or range between $0.92-1.00$ Ignore units even if incorrect	(2)
	- because water is the bottom layer so more dense and ice floats on oil so is less dense	Accept reverse arguments Reference to the layers is required	(1)

Question Number	Answer	Additional Guidance	Mark
5(b)	An answer that give evidence of the following: - use of both densities to get two masses and division by 18 to give moles - subtraction to give either mass or moles or number of molecules - multiplication by Avogadro constant to give number of molecules	Multiple correct methods are possible which process the data in different sequences. The correct final answer is $1.34 \times 10^{22} / 1.338 \times 10^{22}$ which can be awarded (3) regardless of working If this answer is not given then look for evidence of each of the given mathematical processes and give one mark for each The use of both densities must be carried out first Note that the use of 5 for the mass of water implies the use of a density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ Depending on the method used this can be done at the beginning, the middle or at the end of the calculation but must be of (water - ice) This must be evidenced after moles have been calculated Allow TE throughout Ignore SF except 1SF for the final answer Allow use of 6×10^{23} which gives 1.33×10^{22} for (3) Correct answer without working scores (3) Do not allow a number of molecules <1	(3)

Marking points			Example of calculation vs1
	Subtraction	(1)	$m($ water $)=(5 \times 1.00)-(5 \times 0.92)=0.40$ (g)
	Use of both		$n\left(\mathrm{H}_{2} \mathrm{O}\right)=(0.40 \div 18)$
	division by 18		$=0.022222 / 2.2222 \times 10^{-2}(\mathrm{~mol})$
	Multiplication		$\mathrm{N}=\left(2.2222 \times 10^{-2} \times 6.02 \times 10^{23}\right)$
	constant	(1)	$=1.34 \times 10^{22} / 1.338 \times 10^{22}$
or			Example of calculation vs2
	Multiplication		$\mathrm{N}($ water molecules $)=((5 \times 1) \div 18) \times 6.02 \times 10^{23}$
	constant		$=1.667 \times 10^{23}$
	Use of both division by 1	(1)	$\begin{aligned} & \mathrm{N}(\text { ice molecules })=((5 \times 0.92) \div 18) \times 6.02 \times 10^{23} \\ & =1.533 \times 10^{23} \end{aligned}$
	Subtraction	(1)	$N($ Extra $)=1.667 \times 10^{23}-1.533 \times 10^{23}=1.34 \times 10^{22}$
or			Example of calculation vs3
	Use of both		$n($ water $)=((1.00 \times 5.00) \div 18)=0.27778(\mathrm{~mol})$
	division by 18		$n($ ice $)=((0.92 \times 5.00) \div 18)=0.25556(\mathrm{~mol})$
	Subtraction	(1)	Difference in mol $=(0.27778-0.25556)=0.022222(\mathrm{~mol})$
	Multiplication constant	(1)	Extra molecules $=0.022222 \times 6.02 \times 10^{23}=1.34 \times 10^{22}$

Question Number	Answer	Mark
6(a)	The only correct answer is D (\boldsymbol{A} is not correct because there is a ketone group present B is not correct because there is a ketone group present \boldsymbol{C} is not correct because there is a ketone group present	(1)

Question Number	Answer	Mark
6(b)	The only correct answer is C (\boldsymbol{A} is not correct because there are two ketone groups but no aldehyde group B is not correct because there are two ketone groups but no aldehyde group D is not correct because there are two aldehyde groups but no ketone group	(1)

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	An explanation that makes reference to - propanal is condensed back (to the pear-shaped flask) - so propanal is (further) oxidised (to propanoic acid) or propanal is more readily oxidised than propan-1-ol	Allow aldehyde for propanal Allow 'apparatus is reflux' Allow propanal is not being removed /distilled off (from the oxidising agent) Ignore just 'reacts further' Do not award reference to propanal being completely oxidised	(2)

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	$\bullet(+) \mathrm{VI}$	Allow $(+) \operatorname{six} /(+) 6 / \operatorname{six}(+) / 6(+)$	(1)

Question Number	Answer	Additional Guidance	Mark
6(c)(iii)	• balanced equation	Example of equation $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	

Question Number	Answer	Additional Guidance	Mark
6(c)(iv)	-provides a surface for bubbles to form / enables smaller bubbles to form / provides nucleation sites for bubbles or to prevent large bubbles forming	Allow distribution of heat more evenly / to prevent superheating	(1)
		Ignore mixing / to stop bumping / spitting / explosion / liquid splashing out / vigorous reaction / loss of reactants Do not award reference to large gas molecules	

Question Number	Answer	Additional Guidance	Mark
6(c)(v)	- (M1) evaluation of number of moles of propan-1-ol (1) Method one using masses for percentage calculation - (M2) evaluation of maximum mass of propanal - (M3) percentage yield or Method two using moles for percentage calculation - (M2) evaluation of actual moles of propanal - (M3) percentage yield	Example of calculation $\mathrm{n}($ propan- $1-\mathrm{ol})=(1.50 \div 60)=0.025(\mathrm{~mol})$ $n($ propan-1-ol $)=n($ propanal $)$ $\max m($ propanal $)=(0.025 \times 58)$ $=1.45(\mathrm{~g})$ $\%$ Yield $=((0.609 \div 1.45) \times 100)=42 \%$ $n($ propanal $)=(0.609 \div 58)=0.0105(\mathrm{~mol})$ $\%$ Yield $=((0.0105 \div 0.025) \times 100)=42 \%$ Allow TE at each stage Ignore SF except 1SF Penalise incorrect M_{r} values once only Correct answer without working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
6(d)(i)	An explanation that makes reference to the following points: - similar molar masses so the number of electrons is similar/same resulting in similar London forces - propanone (and ethanoic acid) form permanent dipole(-dipole) forces - (only) ethanoic acid forms (intermolecular) hydrogen bonding - which is stronger so requires more energy to break (giving a higher boiling temperature)	Allow van der Waals' forces / dispersion forces / instantaneous dipole-induced dipole forces Ignore reference to ethanoic acid having greater London forces Ignore reference to hydrogen bonding to water by propanone Penalise abbreviation pd-d once only Ignore references to ethanoic acid dimerization Reference to energy must be linked to the breaking of hydrogen bonds	(4)

| $\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$ | Answer | Additional Guidance | Mark |
| :---: | :--- | :--- | :--- | :--- |
| 6(d)(ii) | $\begin{array}{l}\text { An explanation that makes reference to the following } \\ \text { points: } \\ \text { - forms hydrogen bonds with water }\end{array}$ | (1) | Allow H bonds for hydrogen bonds |$]$

Allow annotated equations to score these marks in both (i) and (ii) Allow any unambiguous formulae for the organic molecules in both (i) and (ii) such as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$			
Question Number	Answer	Additional Guidance	Mark
7(a)(i)	A description which includes - equation (1) - LiAlH_{4} in (dry) ether (followed by dilute acid) or H_{2} with $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$	Example of equation $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+4[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \end{aligned}$ Allow names or formulae but both must be correct if given together Allow Lithal Allow hydrogen to be given in the equation or written over the arrow Ignore references to heat or a temperature	(2)
Question Number	Answer	Additional Guidance	Mark
7(a)(ii)	A description which includes - equation from any halogenoalkane (1) - ethanolic/alcoholic ammonia - heat and under pressure	Example of equation $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HBr}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{Br}$ Allow use of state symbol (alc)/(EtOH)/(eth) with NH_{3} Allow ammonia to be given in equation or written over the arrow Accept heat and in a sealed tube Ignore mechanisms If a contradictory chemical is stated then penalise once against M2 or M3	(3)

Question Number	Answer	Mark
$\mathbf{7 (b)}$	The only correct answer is A (an amide)	(1)
	\boldsymbol{B} is not correct because the amine range does not include $3220 \mathrm{~cm}^{-1}$	
\boldsymbol{C} is not correct because the amine range does not include $3220 \mathrm{~cm}^{-1}$		
\boldsymbol{D} is not correct because the amide range does include $3220 \mathrm{~cm}^{-1}$		

Indicative content
IP1 (Similarity)

- they are both

2-amino acids / alpha amino acids /
naturally occurring/ zwitterions
IP2

- equation for the reaction with an acid

IP3

- equation for the reaction with a base

IP4

- alanine has a chiral centre/ asymmetric carbon atom/ non-superimposable mirror images
and
glycine does not
IP5
- (an aqueous solution of) alanine rotates the plane (of polarisation) of plane-polarised (monochromatic) light but glycine does not
IP6
- diagram to show enantiomers of alanine

The zwitterions can be evidenced from each amino acid zwitterion in an equation e.g. $\mathrm{NH}_{3}{ }^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-} / \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}$
e.g. $\mathrm{H}^{+}+\mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \rightarrow \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{2} \mathrm{COOH}$ or $\mathrm{H}^{+}+\mathrm{NH}_{3}{ }^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-} \rightarrow \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
$\mathrm{OH}^{-}+\mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ or
$\mathrm{OH}^{-}+\mathrm{NH}_{3}{ }^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-} \rightarrow \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
Allow use of un-ionised amino acid structures

If IP2 and 3 not scored then allow 1IP for a suitable description of acid and base behaviour

Allow reference to four different atoms/groups bonded to central carbon for chiral centre
'Plane' must be stated at least once

Wedges must be drawn
e.g.

Ignore angles and
connectivity

Question Number	Answer	Additional Guidance	Mark
7(d)	An explanation which includes - lysine requires twice (the volume of HCl) (1) - (because) lysine has two (basic) amine/ NH_{2} groups whereas serine has one	Allow lysine requires $20.0 \mathrm{~cm}^{3}$ and serine requires $10 \mathrm{~cm}^{3}$ Allow lysine has one more (basic) / another amine/ NH_{2} group Allow lysine can accept two protons whereas serine can only accept one	(2)

Question Number	Answer	Mark
8(a)	The only correct answer is C (6 7) \boldsymbol{A} is not correct because there are six non-equivalent carbons in isoamyl acetate and seven in amyl acetate B is not correct because all carbons of amyl acetate generate their own peak in the spectrum D is not correct because the two methyl groups on the branched chain are equivalent	(1)

Question Number	Answer	Additional Guidance	Mark
8(b)	• $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Accept atoms in any order	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (c)}$	$\bullet \mathrm{CH}_{3} \mathrm{COOH}$	Allow displayed, skeletal or combination of Do not award molecular formula	(1)

Question Number	Answer	Additional Guidance	Mark
8(d)	• 3-methylbutan-1-ol	Allow 'methly' for methyl Allow name with missing hyphens Allow 3-methylbutane-1-ol Allow 3-methylbut-1-anol Allow 1-hydroxy-3-methylbutane	(1)
		Do not allow 3-methylbut-1-ol	
		Ignore formulae even if incorrect	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (\mathbf { e })}$	• pentyl ethanoate	Allow pentanyl ethanoate	(1)

| Question
 Number | Any three of the following four structures | Additional Guidance | Mark |
| :---: | :---: | :---: | :--- | :--- | :--- |
| 8(f)(i) | (1) | Accept formulae in any
 order | |

Question Number	Answer	Additional Guidance	Mark
8(f)(ii)	An equation that has - ethanoyl chloride (1) - alcohol and ester+ HCl product (1)	Example of equation Allow structural, displayed formulae in any combination Ignore connectivity to OH except horizontal Ignore state symbols even if incorrect If molecular formulae used then allow (1) for correct equation Allow (1) for a correct equation to form ester A from ethanoic acid e.g. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$	(2)

Question Number	Answer	Additional Guidance	Mark
8(g)	An answer that makes reference to the following points: (similarity) - both make the (same) alcohol / pentan-1-ol (differences) - acid hydrolysis is reversible, alkaline hydrolysis is irreversible - acid hydrolysis produces the carboxylic acid/ ethanoic acid and alkaline hydrolysis produces the carboxylate / ethanoate (ion) - the acid is a catalyst and the alkali is a reactant	Points can be made in equations Accept acid hydrolysis is an equilibrium and alkaline hydrolysis goes to completion Allow just acid for carboxylic acid Allow salt for carboxylate Allow the acid will be regenerated /not used up but the alkali will be used up Ignore references to rate differences Ignore references to a need for the product of alkaline hydrolysis to be acidified which is different to acid hydrolysis	(4)

Question Number	Answer	Additional Guidance	Mark
9(b)	- rate constant units	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Allow units in any order Do not penalise use of $\mathrm{mol}^{-} / \mathrm{s}^{-}$ No TE on incorrect equation in (a)	(1)

Question Number	Answer	Additional Guidance	Mark
9(c)	- calculation of average rate between $0-420 \mathrm{~s}$ to 1/2 SF - calculation of average rate between 420-1260 s to $1 / 2 \mathrm{SF}$	Example of calculation $\begin{align*} & \text { Rate }=\left((0.72-0.36) \div(420-0)=8.5714 \times 10^{-4}\right) \\ & =9 \times 10^{-4} / 8.6 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \tag{1} \end{align*}$ $\begin{aligned} & \text { Rate }=\left((0.36-0.18) \div(1260-420)=2.1429 \times 10^{-4}\right) \\ & =2 \times 10^{-4} / 2.1 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \end{aligned}$ Penalise lack of $1 / 2$ SF once only Ignore units even if incorrect Ignore negative sign in front of rate	(2)

Question Number	Answer	Additional Guidance	Mark
9(d)	An explanation that makes reference to - not zero order because the rate is not constant - not first order because the time taken for the concentration to halve is not equal/ half lives are not constant or not first order because the rate change is not (directly) proportional to the concentration change (1)	Allow the rates calculated in (c) are not the same Allow different times are taken for the concentration to halve Allow the concentration is halved but the rate decreases by a quarter If no other mark awarded allow (1) for reference to justification of second order due to concentration decreasing by $1 / 2$ but rate decreasing by $1 / 4$ or due to rate change proportional to concentration squared/ exponential change	(2)

Question Number	Answer	Additional Guidance	Mark
9(e)		Example of suitable graph: Gradient $=\frac{-4.25}{2.00 \times 10^{-4} \mathrm{~K}^{-1}}==21,250 \mathrm{~K}$	(7)

