Pearson Edexcel

Mark Scheme Final

November 2021
Pearson Edexcel GCE Mathematics
Advanced Subsidiary Level in Mathematics
Paper 22 8MAO/22 Mechanics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 8MAO_22_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question		Scheme	Marks	AOs
1.(a)		$14.7=-14.7+9.8 T \quad$ or $\quad 0=14.7 T-\frac{1}{2} \times 9.8 T^{2}$ or $0=14.7-9.8 \times\left(\frac{1}{2} T\right)$ oe	M1	3.4
		$T=3$	A1	1.1b
			(2)	
(b)		$s_{1}=\frac{(14.7+0)}{2} \times 1.5 \quad\left(11.025\right.$ or $\left.\frac{441}{40}\right)$	M1	1.1b
		$\begin{array}{ll} s_{2}=\frac{1}{2} \times 9.8 \times 2.5^{2} \quad\left(30.625 \text { or } \frac{245}{8}\right) \\ \text { OR } & s_{3}=14.7 \times 1+\frac{1}{2} \times 9.8 \times 1^{2} \quad\left(19.6 \text { or } \frac{98}{5}\right) \\ \text { OR } & -s_{3}=14.7 \times 4-\frac{1}{2} \times 9.8 \times 4^{2}(-19.6) \quad \text { (allow omission of }- \text { on } \\ \text { LHS) } & \end{array}$	M1	1.1b
		Total distance $=s_{1}+s_{2} \quad$ OR $\quad 2 s_{1}+s_{3}$	M1	2.1
		$=41.7 \mathrm{~m}$ or 42 m	A1	1.1 b
			(4)	
(c)		e.g. Take account of the dimensions of the stone (e.g. allow for spin), do not model the stone as a particle, use a more accurate value for g	B1	3.5c
			(1)	
(7 marks)				
Notes: If they use $\mathbf{g} \mathbf{= 9 . 8 1}$ or 10, penalise once for whole question.				
1a	M1	Complete method to find T, condone sign errors (M0 if they only find time to top)		
	A1	$T=3$ correctly obtained.		
1b	M1	Complete method to find one key distance		
	M1	Correct method to find another key distance		
	M1	Complete method to find the total distance		
	A1	41.7 or 42 (after use of $g=9.8$)		
1c	B1	B0 if there are incorrect extra refinements but ignore extra incorrect statements.		

Question		Scheme	Marks	AOs
2(a)		Differentiate v w.r.t. t	M1	3.1a
		$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=10-2 t \quad$ isw	A1	1.1b
			(2)	
2(b)		Solve problem using $v=0$ when $t=6$	M1	3.1a
		$0=10 t-t^{2}-24$	A1	1.1b
		Solve quadratic oe to find other value of t	M1	1.1b
		$t=4$	A1	1.1b
			(4)	
2(c)		Integrate v or $-v$ w.r.t. t	M1	3.1a
		$5 t^{2}-\frac{1}{3} t^{3}-24 t$	A1	1.1b
		Total distance $=-\left[5 t^{2}-\frac{1}{3} t^{3}-24 t\right]_{0}^{4}+\left[5 t^{2}-\frac{1}{3} t^{3}-24 t\right]_{4}^{6}$	M1	2.1
		$\frac{116}{3}(\mathrm{~m})$	A1	1.1b
			(4)	
(10 marks)				
Notes:				
2a	M1	Differentiate, with both powers decreasing by 1		
	A1	Correct expression		
2b	M1	Put $t=6 \quad$ OR use $(t-6)(t-x)=t^{2}-10 t+k$ oe		
	A1	Correct expression (unsimplified) for v OR $\boldsymbol{v}=(t-6)(t-4)$		
	M1	Put $v=0$ to give quadratic in t and solve for other value of t		
	A1	$t=4$		
2c	M1	Integrate, with at least two powers increasing by 1 (allow if only two terms integrated)		
	A1	Correct expression		
	M1	Complete method to find the total distance		
	A1	Accept 39(m) or better		

Question		Scheme	Marks	AOs
3(a)		(i) Equation of motion for P	M1	3.3
		$T-2 m g=2 m a$	A1	1.1b
		(ii) Equation of motion for Q	M1	3.3
		$5 m g-T=5 m a$	A1	1.1b
		N.B. (allow (-a) in both equations)	(4)	
3(b)		Solve equations for a or use whole system equation and solve for a	M1	3.4
		$a=\frac{3 g}{7}=4.2$	A1	1.1b
		$v=\sqrt{2 \times \frac{3 g}{7} \times h}=\sqrt{8.4 h} \quad$ or $\quad v^{2}=2 \times \frac{3 g}{7} \times h(=8.4 h)$	M1	1.1b
		$0=\frac{6 g h}{7}-2 g H$	M1	1.1b
		$H=\frac{3 h}{7}$	A1	1.1b
		Total height $=2 h+h+H$	M1	2.1
		Total height $=\frac{24 h}{7}$	A1	1.1b
			(7)	
3(c)		e.g. The distance that Q falls to the ground would not be exactly h oe	B1	3.5b
			(1)	
3(d)		e.g. The accelerations of the balls would not have equal magnitude (allow 'wouldn't be the same' oe) B0 if they say 'inextensible => acceleration same'	B1	3.5a
			(1)	
(13 marks)				
Notes:				
3a	M1	Translate situation into the model and set up the equation of motion for P (must contain T and a)		
	A1	Correct equation		
	M1	Translate situation into the model and set up the equation of motion for Q (must contain T and a)		

	A1	Correct equation					
		N.B. Allow the above 4 marks if the equations appear in (b). If m 's are omitted consistently, max (a) M1A0M1A0 (b)M1A0M1M1A1M1A0					
3b	M1	Solve for a					
	A1	Allow 4.2 $\left(\mathrm{m} \mathrm{s}^{-2}\right)$ or must be in terms of g only.					
		N.B. Allow the above 2 marks if they appear in (a).					
	M1	Complete method to produce an expression for v or v^{2} in terms h, using their a	$	$		M1	Complete method to produce an expression for H in terms of h, using $a=-g$ and $v=0$
:---	:---	:---					
	A1	Correct expression for H					
	M1	Complete method to find the total distance					
Ac	B1	B0 if any incorrect extras are given					
3d	B1	B0 if any incorrect extras are given or for an incorrect statement e.g. tension is not constant so accelerations will be different					

