

Mark Scheme (Result)

November 2021

Pearson Edexcel GCE Mathematics

Advanced Subsidiary Level in Mathematics

Paper 21 8MA0/21 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 8MA0_21_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- **4.** All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Qu	Scheme	Marks	AO
1 (a)	[p = 1 - (0.2 + 0.2 + 0.1 + 0.2)] = 0.3	B1	1.1b
(b)	A and C are mutually exclusive. $\lceil NOT P(A) \text{ and } P(C) \rceil$	(1) B1	1.2
(0)	A and C are mutually exclusive. [NO1 1(A) and 1(C)]	(1)	1.2
		(2 marks)	
	Notes		
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C = \emptyset$ is B0] If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
2. (a)	From $[5,20)$ fd = 3 or 1 large square = 2.5 passengers o.e.	M1	2.2a
	Correct bar above [0, 5)	A1	1.1b
	Correct bar above [20, 40)	A1	1.1b
		(3)	
(b)	For [40, 65) <u>130</u> passengers <u>or</u> for [65, 80) <u>60</u> passengers	M1	2.1
	For attempt to find total number of passengers = 331	A1ft	1.1b
	[Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)	M1	1.1b
	= 44.9038 = awrt 44.9	A1	1.1b
		(4)	
(c)	Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106 (.3) > 90$	M1	2.4
	So oldest passenger is <u>not</u> an outlier	A1	2.2a
		(2) (9 marks)	
	Notes	(* 22 27)	
(a)	M1 for attempt at fd or a suitable method to deduce the scale for the his	stogram	
	May be implied by one correct bar.		
	1st A1 for first bar $[0, 5)$ with $fd = 1$ or 2 large squares high		
	2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high		
(b)	1^{st} M1 for an attempt using their fd to find the missing frequencies. May be in table 1^{st} A1ft for a clear attempt to find the total number of passengers (ft their 130 and 60) 2^{nd} M1 for any expression/equation leading to correct Q_2 Must be using 40-65 class 2^{nd} A1 for awrt 44.9 (allow $(n + 1)$ leading to 45)		
(c)	M1 for finding the upper outlier limit (expression or awrt 106) and stating or implying > 90 A1 dep on M1 seen for deducing NOT an outlier		

Qu	Scheme	Marks	AO
3. (a)	Systematic (sampling)	B1	1.2
		(1)	
(b)(i)	[Daily Mean] Wind Speed	B1	2.2a
(ii)	Light	B1	1.2
		(2)	
(c)	Variable A occurs most (around 80~90%) of the time	B1	2.2b
		(1)	
		(4 marks)	
	Notes		
(a)	B1 for identifying the correct sampling technique Allow slight misspelling e.g. "sysmatic", "sytmatic" Do NOT allow "systemic"		
(b)(i)	B1 for identifying appropriate qualitative variable. {LDS mark} Allow "Wind speed" or "Wind strength" but NOT just "wind" or "wind direction"		
(ii)	B1 for realising that modal wind speed is "Light" {LDS mark} Allow just "light" or "most light"		
NB	These two B marks are independent so can score B0B1 for e.g. "rainfall" and "light"		
(c)	B1 for inferring that frequency of A can be estimated fairly reliably: {underestimates B and over estimates C }		
	e.g. "A is the most frequent" [can then ignore comments about B and C]		

Qu	Scheme	Marks	AO
4. (a)	[$R = \text{no. of red beads in Aliya's bracelet}$] $R \sim B(18, 0.14)$	B1	3.3
		(1)	
(b)(i)	7/7 1) 0.10102	5.4	
(b)(i)	P(R=1) = 0.19403 awrt 0.194	B1	1.1b
(ii)	P(R4) = 1 - P(R ,, 3) = 1 - [0.76184]	M1	3.4
	= 0.2381588 awrt <u>0.238</u>	A1	1.1b
		(3)	
(c)	Requires $p = 0.14$ to be constant so need a large number of beads in the sack to ensure that removing 18 beads does not appreciably affect this probability, then it could be suitable.	B1	3.5b
	TT 0.14 TT 0.14	(1)	2.5
(d)	$H_0: p = 0.14$ $H_1: p \neq 0.14$	B1	2.5
	[X = number of red beads in the sample] $X \sim B(75, 0.14)$	M1	3.3
	$P(X_{0}, 4) = 0.01506$ or if B(75, 0.14) seen awrt 0.02 $\{0.02 < 0.025 \text{ so significant } \underline{\text{or}} \text{ reject H}_{0}\}$	A1	3.4
	There is evidence that the proportion of red beads has changed	A1	2.2b
	Free Free Free Free Free Free Free Free	(4)	
(e)	p -value is $2 \times "0.01506" = 0.030123 = awrt 0.03$	B1ft	1.1b
		(1)	
		(10 marks)
	Notes		,
(a)	B1 for B(18, 0.14) accept in words e.g. <u>binomial</u> with $\underline{n = 18}$ and $\underline{p = 0.1}$	4	
(L)(2)	D1 C 40104		
(b)(i) (ii)	B1 for awrt 0.194 M1 for interpreting "at least 4" Need $1 - P(R, 3)$ and $1 - p$ [$0] I$	P(R=3) = 0	233 OK
(11)	A1 for awrt 0.238	(K-3)=0.	233 OK
		2	
(c)	B1 for mention of <u>large number of beads</u> and need for $p = 0.14$ to be constant for it to be suitable. Do NOT accept e.g. "events are independent"		
(d)	B1 for both hypotheses correct with use of p or π		
	M1 for selecting a suitable model: sight or correct use of B(75, 0.14)		
	May be implied by sight of 0.015 or better $\underline{\text{or}} [P(X > 4) =] 0.9849 \text{ i.e. } 0.985 \text{ or better}$		
	1st A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct expression)		
	Allow 1 st A1 for awrt 0.985 only if correct comparison with 0.975 is seen.		
	Sight of B(75, 0.14) and P(X ,, 4) = awrt 0.02 scores M1A1 No sight of B(75, 0.14) but sight of awrt 0.015 scores M1(\Rightarrow)A1[Condone P(X = 4) =]		
	2^{nd} A1 (dep on M1A1) for a correct conclusion in context mentioning "properties"		
		"ch	anged"
NID	If there is a statement about H_0 or significance it must be compatible. May see CP in V and V and V and V and V are V and V and V are V and V are V are V and V are V are V and V are V and V are V are V and V are V are V and V are V and V are V are V and V are V are V and V are V and V are V and V are V are V and V are V and V are V and V are V are V and V are V are V and V are V and V are V are V and V are V and V are V and V are V are V and V are V are V and V are V and V are V and V are V and V are V are V and V are V and V are V are V and V are V are V and V are V and V are V are V are V and V are V are V and V are V are V and V are V are V are V and V are V and V are V and V are V are V are V are V are V and V are V are V are V and V are V are V and V are V are V and V are V are V are V are V and V are V are V and V are V are V and V are V and V are V are V and V are V are V and V are V and V are V are V and V are V are V and V are V and V are V are V and V are V are V are V and V are V and V are V are V are V are V are V are V and V are V and V are V and V are V are V		
NB	May see CR i.e. X ,, 4 (mark when prob seen) and X 18 (prob = 0.0140 NB for information $P(X = 4) = 0.0104$ and can only score M1A0A		
	11D for information $\Gamma(\lambda - 4) = 0.0104$ and can only score WITAU	ло п D (/3, 0	7.14) SEEII
(e)	B1ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3s	fused	
	NB an answer of 0.02 in (d) leading to 0.04 in (e) is B0		
SC	Use of CR will give significance level of $0.01506+0.01406=0$.	029 score	B1 no ft
•	<u> </u>		

Qu	Scheme	Marks	AO
5	Must end up with 3 of each colour or 4 of each colour	M1	3.1b
	$\underline{n=2}$ requires 1 st red and 2 nd green or red from A and green from B	M1	2.2a
	P(1 st red and 2 nd green) = $\frac{4}{9} \times \frac{1}{10} = \frac{4}{90}$ or $\frac{2}{45}$ $p = \frac{2}{\underline{45}}$	A1	1.1b
	$\underline{n=5}$ requires 1 st green and 2 nd yellow or green from A and yellow from B	M1	2.2a
	P(1 st green and 2 nd yellow) = $\frac{5}{12} \times \frac{3}{10} = \frac{15}{120}$ or $\frac{1}{8}$ $p = \frac{1}{8}$	A1	1.1b
		(5)	
		(5 marks)	ļ
	Notes		
	1st M1 for an overall strategy realising there are 2 options. Award when evidence of both cases (3 of each colour or 4 of each colour or 5 and M1 for $p = \frac{2}{45}$ or exact equivalent $\frac{4}{9} \times \frac{1}{9}$ or each colour or 4 of each colour or 4	our) seen.	
NB	If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final	A1 only (i.e	e. 4/5)

Greg Attwood 23rd Oct 2021