Mark Scheme (Result)
November 2021

Pearson Edexcel GCE Further Mathematics Advanced Subsidiary Level in Mathematics Paper 1 8MAO/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 8MAO_01_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75.
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question	Scheme	Marks	AOs		
$\mathbf{1}$	Finds critical values $x^{2}-x>20 \Rightarrow x^{2}-x-20>0 \Rightarrow x=(5,-4)$	M1	1.1 b		
	Chooses outside region for their values Eg. $x>5, x<-4$	M1	1.1 b		
	Presents solution in set notation $\{x: x<-4\} \cup\{x: x>5\}$ oe	A1	2.5		
	Notes	(3)			
(3 marks)					

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as $5<x<-4$

A1: Presents in set notation as required $\{x: x<-4\} \cup\{x: x>5\}$ Accept $\{x<-4 \cup x>5\}$.
Do not accept $\{x<-4, x>5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Question	Scheme	Marks	AOs
2	$\frac{9^{x-1}}{3^{y+2}}=81 \Rightarrow \frac{3^{2 x-2}}{3^{y+2}}=3^{4}$ or $\frac{9^{x-1}}{3^{y+2}}=81 \Rightarrow \frac{9^{x-1}}{9^{\frac{1}{2}(y+2)}}=9^{2}$	M1	1.1b
	$\Rightarrow 2 x-2-y-2=4 \Rightarrow y=$ or $\Rightarrow x-1-\frac{1}{2} y-1=2 \Rightarrow y=$	dM1	1.1b
	$\Rightarrow y=2 x-8$	A1	1.1b
		(3)	
Alt	Eg. $\log _{3}\left(\frac{9^{x-1}}{3^{y+2}}\right)=\log _{3} 81$	M1	1.1b
	$\begin{gathered} \Rightarrow(x-1) \log _{3}\left(9^{x-1}\right)-(y+2) \log _{3}\left(3^{y+2}\right)=4 \\ \Rightarrow 2(x-1)-y-2=4 \Rightarrow y= \end{gathered}$	dM1	1.1b
	$\Rightarrow y=2 x-8$	A1	1.1b
(3 marks)			
Notes M1: Attempts to set 9^{x-1} and 81 as powers of 3. Condone $9^{x-1}=3^{2 x-1}$ and $9^{x-1}=3^{3 x-3}$. Alternatively attempts to write each term as a logarithm of base 3 or 9 . You must see the base written to award this mark. dM1: Attempts to use the addition (or subtraction) index law, or laws or logarithms, correctly and rearranges the equation to reach y in terms of x. Condone slips in their rearrangement. A1: $y=2 x-8$			

Question	Scheme	Marks	AOs
3	$\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x=\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$	M 1	1.1 b
	$=\frac{3}{2} \times \frac{x^{2}}{2}-2 \times \frac{x^{-2}}{-2}(+c)$	A 1	1.1 b
	$=\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$	o.e	dM 1

(4 marks)

Notes:

(i)

M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index.
$\int \frac{3 x^{4}}{2 x^{3}}-\frac{4}{2 x^{3}} \mathrm{~d} x$ scores this mark.
A1: $\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$ o.e such as $\frac{1}{2} \int\left(3 x-4 x^{-3}\right) \mathrm{d} x$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index.
Look for $=a x^{p}+b x^{q}$ where $p=2$ or $q=-2$
A1: Correct answer $\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$ o.e. such as $\frac{3}{4} x^{2}+x^{-2}+c$

Question	Scheme	Marks	AOs
4(a)	Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$ $\text { E.g. }(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$	M1	1.1b
	Explains that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ (and the stone is travelling in a straight line) the stone passes through the point O.	A1	2.4
		(2)	
(b)	Attempts distance $A B=\sqrt{(12+24)^{2}+(10+5)^{2}}$	M1	1.1b
	$\text { Attempts speed }=\frac{\sqrt{(12+24)^{2}+(10+5)^{2}}}{4}$	dM1	3.1a
	Speed $=9.75 \mathrm{~ms}^{-1}$	A1	3.2a
		(3)	
(5 marks)			
Alt(a)	Attempts to find the equation of the line which passes through A and B E.g. $y-5=\frac{5+10}{12+24}(x-12) \quad\left(y=\frac{5}{12} x\right)$	M1	1.1b
	Shows that when $x=0, y=0$ and concludes the stone passes through the point O.	A1	2.4

Notes

(a)

M1: Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$ either way around.
E.g. States that $(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$

Alternatively, allow an attempt finding the gradient using any two of $A O, O B$ or $A B$
Alternatively attempts to find the equation of the line through A and B proceeding as far as $y=\ldots x$ Condone sign slips.

A1: States that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ or as $A O$ is parallel to $O B$ (and the stone is travelling in a straight line) the stone passes through the point O. Alternatively, shows that the point $(0,0)$ is on the line and concludes (the stone) passes through the point O.
(b)

M1: Attempts to find the distance $A B$ using a correct method.
Condone slips but expect to see an attempt at $\sqrt{a^{2}+b^{2}}$ where a or b is correct
dM1: Dependent upon the previous mark. Look for an attempt at $\frac{\text { distance } A B}{4}$
A1: $9.75 \mathrm{~ms}^{-1} \quad$ Requires units

Question	Scheme	Marks	AOs
5(a)	Attempts to find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$	M1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x \Rightarrow$ gradient of tangent at P is 12	A1	1.1 b
		(2)	
(b)	Gradient $P Q=\frac{3(2+h)^{2}-2-10}{(2+h)-2}$ oe	B1	1.1b
	$=\frac{3(2+h)^{2}-12}{(2+h)-2}=\frac{12 h+3 h^{2}}{h}$	M1	1.1 b
	$=12+3 \mathrm{~h}$	A1	2.1
		(3)	
(c)	Explains that as $h \rightarrow 0,12+3 h \rightarrow 12$ and states that the gradient of the chord tends to the gradient of (the tangent to) the curve	B1	2.4
		(1)	
(6 marks)			

Notes

(a)

M1: Attempts to differentiate, allow $3 x^{2}-2 \rightarrow \ldots x$ and substitutes $x=2$ into their answer
A1: cso $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x \Rightarrow$ gradient of tangent at P is 12
(b)

B1: Correct expression for the gradient of the chord seen or implied.
M1: Attempts $\frac{\delta y}{\delta x}$, condoning slips, and attempts to simplify the numerator. The denominator must be h

A1: cso $12+3 h$
(c)

B1: Explains that as $h \rightarrow 0,12+3 h \rightarrow 12$ and states that the gradient of the chord tends to the gradient of the curve

Question	Scheme	Marks	AOs
6 (a)	$3 x^{3}-17 x^{2}-6 x=0 \Rightarrow x\left(3 x^{2}-17 x-6\right)=0$	M1	1.1a
	$\Rightarrow x(3 x+1)(x-6)=0$	dM1	1.1b
	$\Rightarrow x=0,-\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^{2}=n$ where n is any solution $\ldots 0$ to (a)	M1	2.2a
	Two of $2,2 \pm \sqrt{6}$	A1ft	1.1b
	All three of 2, $2 \pm \sqrt{6}$	A1	2.1
		(3)	
(6 marks)			
(a) Notes			

M1: Factorises out or cancels by x to form a quadratic equation.
dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1: $x=0,-\frac{1}{3}, 6$ and no extras
(b)

M1: Attempts to solve $(y-2)^{2}=n$ where n is any solution $\ldots 0$ to (a). At least one stage of working must be seen to award this mark. $\operatorname{Eg}(y-2)^{2}=0 \Rightarrow y=2$

A1ft: Two of $2,2 \pm \sqrt{6}$ but follow through on $(y-2)^{2}=n \Rightarrow y=2 \pm \sqrt{n}$ where n is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of $2,2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs
7 (a)	Sets $50=7 \times 14 \sin (S P Q)$ oe	B1	1.2
	Finds $180^{\circ}-\arcsin \left(" \frac{50}{98} "\right)$	M1	1.1b
	$=149.32^{\circ}$	A1	1.1b
		(3)	
(b)	Method of finding $S Q$ $S Q^{2}=14^{2}+7^{2}-2 \times 14 \times 7 \cos " 149.32 \prime$	M1	1.1b
	$=20.3 \mathrm{~cm}$	A1	1.1b
		(2)	
(5 marks)			
Alt(a)	States or uses $14 h=50$ or $7 h_{1}=50$	B1	1.2
	Full method to find obtuse $\angle S P Q$. In this case it is $90^{\circ}+\arccos \left(\frac{h}{7}\right)$ or $90^{\circ}+\arccos \left(\frac{h_{1}}{14}\right)$	M1	1.1b
	awrt 149.32°	A1	1.1b
(a) B1: Sets $50=7 \times 14 \sin (S P Q)$ oe M1: Attempts the correct method of finding obtuse $\angle S P Q$. See scheme. A1: awrt 149.32° (b) M1: A correct method of finding $S Q$ using their $\angle S P Q$. $S Q^{2}=14^{2}+7^{2}-2 \times 14 \times 7 \cos$ "149.32" scores this mark. A1: awrt 20.3 cm (condone lack of units)			
Alt(a)			

B1: States or uses $14 h=50$ or $7 h_{1}=50$
M1: Full method to find obtuse $\angle S P Q$.
In this case it is $90^{\circ}+\arccos \left(\frac{h}{7}\right)$ or $90^{\circ}+\arccos \left(\frac{h_{1}}{14}\right)$
A1: awrt 149.32°

8 (a)	$(2+a x)^{8} \quad$ Attempts the term in $x^{5}={ }^{8} C_{5} 2^{3}(a x)^{5}=448 a^{5} x^{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	Sets $448 a^{5}=3402 \Rightarrow a^{5}=\frac{243}{32}$	M1	1.1b
	$\Rightarrow a=\frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^{8} or ${ }^{8} C_{4} 2^{4} a^{4}$	M1	1.1b
	Attempts the sum of both terms $2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$	dM1	2.1
	$=256+5670=5926$	A1	1.1b
		(3)	
(7 marks)			
(a) M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${ }^{8} C_{5} 2^{3} a x^{5}$ and left without the binomial coefficient expanded			

A1: $448 a^{5} x^{5}$ Allow unsimplified but ${ }^{8} C_{5}$ must be "numerical"

M1: Sets their $448 a^{5}=3402$ and proceeds to $\Rightarrow a^{k}=\ldots$ where $k \in \mathrm{~N} \quad k \neq 1$
A1: Correct work leading to $a=\frac{3}{2}$
(b)

M1: Finds either term required. So allow for 2^{8} or ${ }^{8} C_{4} 2^{4} a^{4}$ (even allowing with a)
dM1: Attempts the sum of both terms $\quad 2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$
A1: cso 5926

Question	Scheme	Marks	AOs
9	$\int_{k}^{9} \frac{6}{\sqrt{x}} \mathrm{~d} x=\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20 \Rightarrow 36-12 \sqrt{k}=20$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Correct method of solving Eg. $36-12 \sqrt{k}=20 \Rightarrow k=$	dM1	3.1a
	$\Rightarrow k=\frac{16}{9}$ oe	A1	1.1b
		(4)	

Notes:

M1: For setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$
A1: A correct equation involving p Eg. $36-12 \sqrt{k}=20$
dM1: For a whole strategy to find k. In the scheme it is awarded for setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$, using both limits and proceeding using correct index work to find k. It cannot be scored if $k^{\frac{1}{2}}<0$
A1: $k=\frac{16}{9}$

Question	Scheme	Marks	AOs
11 (a)	$35\left(\mathrm{~km}^{2}\right)$	B1	3.4
		(1)	
(b)	Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow 45 \mathrm{e}^{14 c}=20$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$\Rightarrow c=\frac{1}{14} \ln \left(\frac{20}{45}\right)=\cdots-0.0579$	dM1	3.1b
	$A=80-45 \mathrm{e}^{-0.0579 t}$	A1	3.3
		(4)	
(c)	Gives a suitable answer - The maximum area covered by trees is only $80 \mathrm{~km}^{2}$ - The " 80 " would need to be " 100 " - Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a \log of a negative number	B1	3.5b
		(1)	
(6 marks)			
(a)	Notes		

B1: Uses the equation of the model to find that $35\left(\mathrm{~km}^{2}\right)$ of the reserve was covered on $1^{\text {st }}$ January 2005. Do not accept eg. $35 \mathrm{~m}^{2}$
(b)

M1: Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow A \mathrm{e}^{14 c}=B$
A1: $45 \mathrm{e}^{14 c}=20$ or equivalent.
dM1: A full and careful method using precise algebra, correct log laws and a knowledge that e^{x} and $\ln x$ are inverse functions and proceeds to a value for c.

A1: Gives a complete equation for the model $A=80-45 \mathrm{e}^{-0.0579 t}$
(c)

B1: Gives a suitable interpretation (See scheme)

Question	Scheme	Marks	AOs
12 (i)	$\begin{array}{ll} \hline \text { Uses } & \cos ^{2} \theta=1-\sin ^{2} \theta \\ & 5 \cos ^{2} \theta=6 \sin \theta \Rightarrow 5 \sin ^{2} \theta+6 \sin \theta-5=0 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \hline 1.2 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\Rightarrow \sin \theta=\frac{-3+\sqrt{34}}{5} \Rightarrow \theta=\ldots$	dM1	3.1a
	$\Rightarrow \theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
		(5)	
(ii) (a)	One of - They cancel by $\sin x$ (and hence they miss the solution $\sin x=0 \Rightarrow x=0$) - They do not find all the solutions of $\cos x=\frac{3}{5}$ (in the given range) or they missed the solution $x=-53.1^{\circ}$	B1	2.3
	Both of the above	B1	2.3
		(2)	
(ii) (b)	Sets $5 \alpha+40^{\circ}=720^{\circ}-53.1^{\circ}$	M1	3.1a
	$\alpha=125^{\circ}$	A1	1.1b
		(2)	
(9 marks)			
(i)	Notes		

M1: Uses $\cos ^{2} \theta=1-\sin ^{2} \theta$ to form a 3 TQ in $\sin \theta$
A1: Correct $3 \mathrm{TQ}=05 \sin ^{2} \theta+6 \sin \theta-5=0$
$\mathbf{d M 1}$: Solves their 3TQ in $\sin \theta$ to produce one value for θ. It is dependent upon having used $\cos ^{2} \theta= \pm 1 \pm \sin ^{2} \theta$

A1: Two of awrt $\theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ} \quad$ (or if in radians two of awrt $0.60,2.54,6.89$)
A1: All three of awrt $\theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ and no other values
(i) (a)

See scheme

(ii)(b)

M1: Sets $5 \alpha+40^{\circ}=666.9^{\circ}$ o.e.
A1: awrt $\alpha=125^{\circ}$

Question		heme	Marks	AOs
13 (a)	$\begin{aligned} \log _{10} h & =2.25-0.235 \log _{10} m \\ & \Rightarrow h=10^{2.25-0.235 \log _{10} m} \\ & \Rightarrow h=10^{2.25} \times m^{-0.235} \end{aligned}$	$\begin{aligned} h & =p m^{q} \\ \Rightarrow \log _{10} h & =\log _{10} p+\log _{10} m^{q} \\ \Rightarrow \log _{10} h & =\log _{10} p+q \log _{10} m \end{aligned}$	M1	1.1b
	Either one of $p=10^{2.25} \quad q=-0.235$	Or either one of $\log _{10} p=2.25 \quad q=-0.235$	A1	1.1b
	$\Rightarrow p=178$ and $q=-0.235$		A1	2.2a
			(3)	
(b)	$h=" 178 " \times 5^{"-0.235 "}$	$\log _{10} h=$ "2.25"-"0.235" $\log _{10} 5$	M1	3.1b
	$h=122$	$h=122$	A1	1.1 b
	Reasonably accurate (to 2) so suitable	A1ft	3.2b
			(3)	
(c)	" p " would be the (res mammal with a mas	g) heart rate (in bpm) of a 1 kg	B1	3.4
			(1)	
(7 marks)				
(a) Notes				
M1: Establ May b A1: For a A1: $p=17$ (b)	hes a link between $h=p m^{q}$ an implied by a correct equation rrect equation in p or q and $q=-0.235$	$\begin{aligned} & \log _{10} h=2.25-0.235 \log _{10} m \\ & p \text { or } q \end{aligned}$		
M1: Uses either model to set up an equation in h (or m)				
E.g. It is a suitable model as it is only " 3 " bpm away from the real value \checkmark Do not allow an argument stating that it should be the same. It is an unsuitable model as " 122 " bpm is not equal to $119 \mathrm{bpm} \times$		del. Follow through on their answer. answer from using the model. " bpm away from the real value hat it should be the same. pm is not equal to 119 bpm		
(c)				

Questio	Scheme	Marks	AOs
14 (a)	$\mathrm{f}(x)=-3 x^{2}+12 x+8=-3(x \pm 2)^{2}+\ldots$	M1	1.1b
	$=-3(x-2)^{2}+\ldots$	A1	1.1b
	$=-3(x-2)^{2}+20$	A1	1.1b
		(3)	
(b)	Coordinates of $M=(2,20)$	$\begin{aligned} & \text { B1 ft } \\ & \text { B1 ft } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$
		(2)	
(c)	$\int-3 x^{2}+12 x+8 \mathrm{~d} x=-x^{3}+6 x^{2}+8 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Method to find $R=$ their $2 \times 20-\int_{0}^{2}\left(-3 x^{2}+12 x+8\right) \mathrm{d} x$	M1	3.1a
	$R=40-\left[-2^{3}+24+16\right]$	dM1	1.1b
	$=8$	A1	1.1b
		(5)	
(10 marks)			
Alt(c)	$\int 3 x^{2}-12 x+12 \mathrm{~d} x=x^{3}-6 x^{2}+12 x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Method to find $R=\int_{0}^{2} 3 x^{2}-12 x+12 \mathrm{~d} x$	M1	3.1a
	$R=2^{3}-6 \times 2^{2}+12 \times 2$	dM1	1.1b
	$=8$	A1	1.1b
Notes:			
(a) M1: Attempts to take out a common factor and complete the square. Award for $-3(x \pm 2)^{2}+\ldots$ Alternatively attempt to compare $-3 x^{2}+12 x+8$ to $a x^{2}+2 a b x+a b^{2}+c$ to find values of a and b			
A1: Proceeds to a form $-3(x-2)^{2}+\ldots$ or via comparison finds $a=-3, b=-2$			

(b)

B1ft: One correct coordinate
B1ft: Correct coordinates. Allow as $x=\ldots, y=\ldots$
Follow through on their $(-b, c)$
(c)

M1: Attempts to integrate. Award for any correct index

A1: $\int-3 x^{2}+12 x+8 \mathrm{~d} x=-x^{3}+6 x^{2}+8 x(+c)$ (which may be unsimplified)
M1: Method to find area of R. Look for their 2×20 " $-\int_{0}^{\text {"2" }} \mathrm{f}(x) \mathrm{d} x$
dM1: Correct application of limits on their integrated function. Their 2 must be used
A1: Shows that area of $R=8$

Question	Scheme	Marks	AOs
15 (a)	Deduces the line has gradient " -3 " and point $(7,4)$ $\operatorname{Eg} \quad y-4=-3(x-7)$	M1	2.2a
	$y=-3 x+25$	A1	1.1b
		(2)	
(b)	Solves $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously	M1	3.1a
	$P=\left(\frac{15}{2}, \frac{5}{2}\right)$ oe	A1	1.1b
	Length $P N=\sqrt{\left(\frac{15}{2}-7\right)^{2}+\left(4-\frac{5}{2}\right)^{2}}=\left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y=\frac{1}{3} x+k$ meets C using vectors Eg: $\binom{7.5}{2.5}+2 \times\binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$ to find k	M1	2.1
	$k=\frac{10}{3}$	A1	1.1b
		(3)	
(9 marks)			
(c)	Attempts to find where $y=\frac{1}{3} x+k$ meets C via simultaneous equations proceeding to a 3 TQ in x (or y) $\text { FYI } \frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0$	M1	3.1a
	Uses $b^{2}-4 a c=0$ oe and proceeds to $k=\ldots$	M1	2.1
	$k=\frac{10}{3}$	A1	1.1b
		(3)	

Notes:

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of $P N$ is -3 with point $(7,4)$ to find the equation of line $P N$
So sight of $y-4=-3(x-7)$ would score this mark
If the form $y=m x+c$ is used expect the candidates to proceed as far as $c=\ldots$ to score this mark.
A1: Achieves $y=-3 x+25$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving their $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1: $P=\left(\frac{15}{2}, \frac{5}{2}\right)$
M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=\left(\frac{15}{2}, \frac{5}{2}\right)$ and $(7,4)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. $\operatorname{Eg}(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ or its expanded form. Do not accept $(x-7)^{2}+(y-4)^{2}=\left(\sqrt{\frac{5}{2}}\right)^{2}$

(c)

M1: Attempts to find where $y=\frac{1}{3} x+k$ meets C using a vector approach
M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$
A1: $k=\frac{10}{3}$ only

Alternative I

M1: For solving $y=\frac{1}{3} x+k$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both \boldsymbol{b} and \boldsymbol{c} are dependent upon \boldsymbol{k}. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $\frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0$ oe
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=\frac{10}{3}$ only

Alternative II

M1: For solving $y=-3 x+25$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$, creating a 3 TQ and solving.
M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y=\frac{1}{3} x+k$ and finding k
A1: $k=\frac{10}{3}$ only

Question	Scheme	Marks	AOs
16 (a) (i)	Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ at $x=2 \Rightarrow 12 a+60-39=-3$	M1	1.1b
	Solves a correct equation and shows one correct intermediate step $12 a+60-39=-3 \Rightarrow 12 a=-24 \Rightarrow a=-2$ *	A1*	2.1
(a) (ii)	Uses the fact that (2,10) lies on $C \quad 10=8 a+60-78+b$	M1	3.1a
	Subs $a=-2$ into $10=8 a+60-78+b \Rightarrow b=44$	A1	1.1b
		(4)	
(b)	$\mathrm{f}(x)=-2 x^{3}+15 x^{2}-39 x+44 \Rightarrow \mathrm{f}^{\prime}(x)=-6 x^{2}+30 x-39$	B1	1.1b
	Attempts to show that $-6 x^{2}+30 x-39$ has no roots Eg. calculates $b^{2}-4 a c=30^{2}-4 \times-6 \times-39=-36$	M1	3.1a
	States that as $\mathrm{f}^{\prime}(x) \neq 0 \Rightarrow$ hence $\mathrm{f}(x)$ has no turning points *	A1*	2.4
		(3)	
(c)	$-2 x^{3}+15 x^{2}-39 x+44 \equiv(x-4)\left(-2 x^{2}+7 x-11\right)$	M1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(d)	Deduces either intercept. $(0,44)$ or $(20,0)$	B1 ft	1.1b
	Deduces both intercepts (0,44) and (20,0)	B1 ft	2.2a
		(2)	
(11 marks)			

(a)(i)

M1: Attempts to use $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ at $x=2$ to form an equation in a. Condone slips but expect to see two of the powers reduced correctly

A1*: Correct differentiation with one correct intermediate step before $a=-2$
(a)(ii)

M1: Attempts to use the fact that $(2,10)$ lies on C by setting up an equation in a and b with $a=-2$ leading to $b=\ldots$

A1: $b=44$
(b)

B1: $\mathrm{f}^{\prime}(x)=-6 x^{2}+30 x-39$ oe
M1: Correct attempt to show that " $-6 x^{2}+30 x-39$ " has no roots.
This could involve an attempt at

- finding the numerical value of $b^{2}-4 a c$
- finding the roots of $-6 x^{2}+30 x-39$ using the quadratic formula (or their calculator)
- completing the square for $-6 x^{2}+30 x-39$

A1*: A fully correct method with reason and conclusion. Eg as $b^{2}-4 a c=-36<0, \mathrm{f}^{\prime}(x) \neq 0$ meaning that no stationary points exist
(c)

M1: For an attempt at division (seen or implied) Eg $-2 x^{3}+15 x^{2}-39 x+b \equiv(x-4)\left(-2 x^{2} \ldots \pm \frac{b}{4}\right)$
A1: $(x-4)\left(-2 x^{2}+7 x-11\right)$ Sight of the quadratic with no incorrect working seen can score both marks.
(d)

See scheme. You can follow through on their value for b

