Please write clearly ir	n block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		-
Candidate signature	I declare this is my own work.	-

A-level PHYSICS

Paper 3 Section A

Thursday 15 June 2023

Morning

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

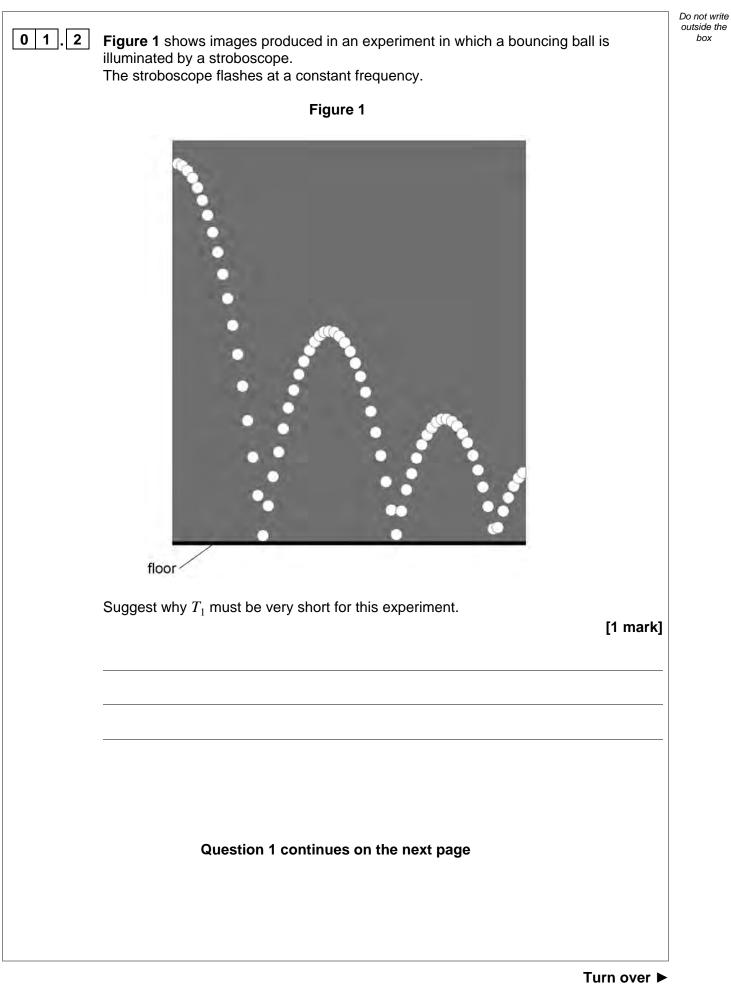
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

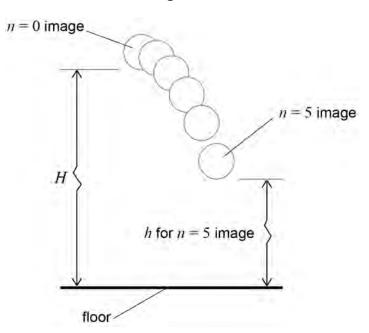
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.


For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

Do not write outside the box

	Se	ection A		
	Answer all que	stions in this sectio	n.	
0 1	A stroboscope emits bright flashe The duration of each flash and th		flashes can be varie	ed.
	Table 1 shows information about	the stroboscope.		
	1	Table 1		
		Minimum	Maximum	
	Duration of each flash / μs	60	300	
	Frequency of flashes / Hz	1	150	
01.1	The duty cycle of a stroboscope i What is the maximum duty cycle Tick (\checkmark) one box. 6.0×10^{-5}	-	?	[1 mark
	9.0×10^{-3} 4.5×10^{-2}			



Do not write outside the box

Figure 2 shows the first six images starting with n = 0, where *n* is the image number.

The images are used to determine:

H, the vertical distance from the bottom of the ball to the floor when n = 0 *h*, the vertical distance from the bottom of the ball to the floor for each non-zero value of *n*.

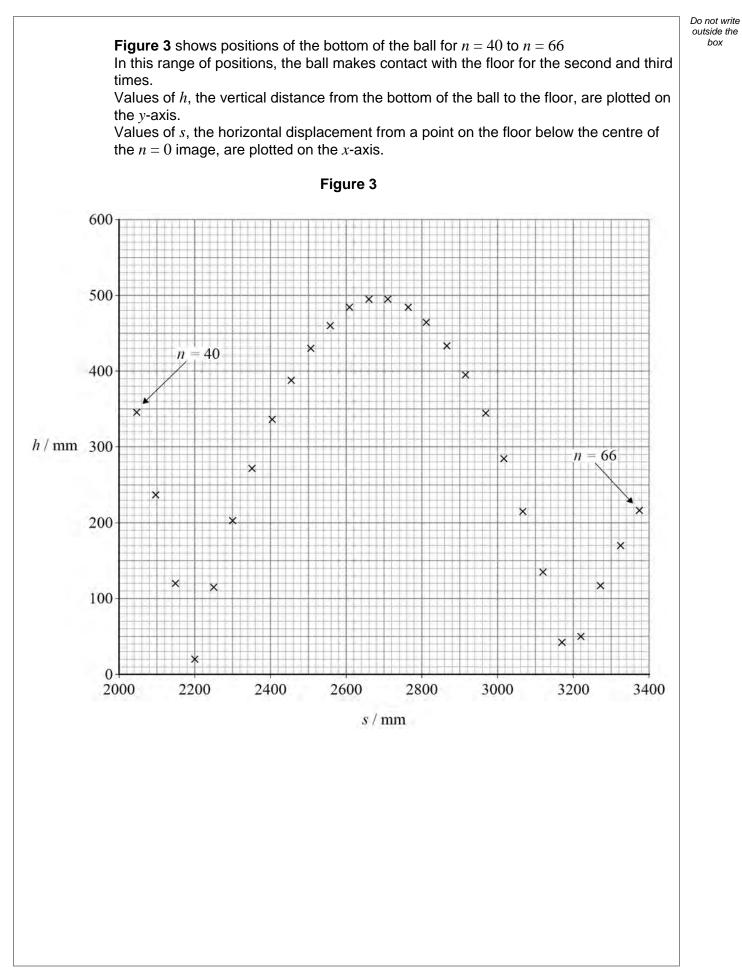
The n = N image is produced at the instant that the ball hits the floor for the first time. For *n* between 0 and *N* it can be shown that

$$H - h = \frac{u_0 n}{f} + \frac{g}{2} \left(\frac{n}{f}\right)^2$$

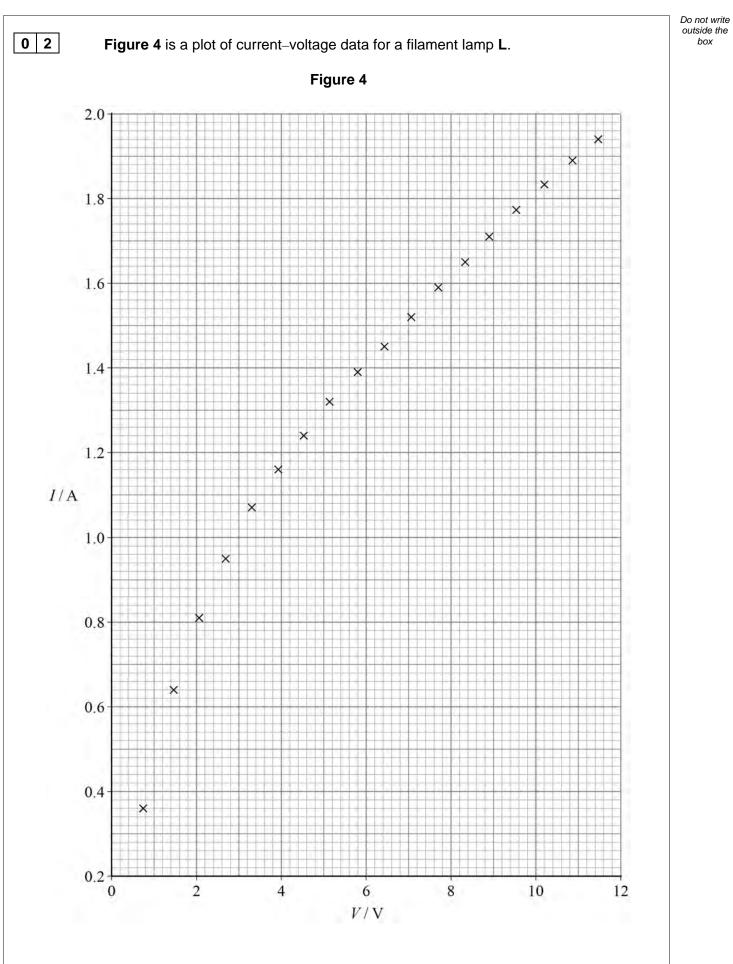
where

 u_0 is the vertical velocity of the ball when n = 0

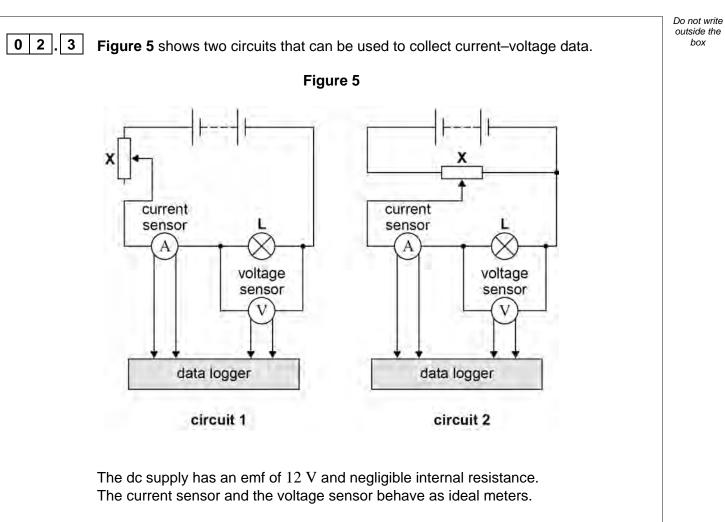
g is the acceleration due to gravity


f is the frequency of the flashes.

0 1.3	In order to find g, a graph is plotted with values of $\frac{H-h}{n}$ on the y-axis.	Do not write outside the box
	Suggest what is plotted on the <i>x</i> -axis. Go on to explain how g is determined from this graph. [3 mag	arks]
	The following data are recorded. H = 1550 mm	
	f = 31.0 Hz The graphical analysis of data from Figure 1 gives <i>g</i> as 9.79 m s ⁻² .	
01.4	Determine u_0 . [3 ma	arks]
	$u_0 \equiv$	n s ⁻¹
	$u_0 = $ r Question 1 continues on the next page	


Turn over ►

01.5	Determine, in mm s ⁻¹ , the horizontal velocity of the ball between the second and thir contacts of the ball with the floor. [2 mark	
01.6	horizontal velocity = mm s Determine the time between the second and third contacts. Annotate Figure 3 to show your method.	
	[3 mark	(S]
	time = 	s 13



		Do not write
	The current <i>I</i> was measured as the voltage <i>V</i> across L was increased at a steady rate. These data were obtained using a current sensor and a voltage sensor connected to a data logger. The logger recorded data at a rate of 2.5 Hz.	outside the box
02.1	Determine, in V s ⁻¹ , the rate of increase of V. [2 marks]	
	rate of increase of $V =$ V s ⁻¹	
02.2	State two advantages of using data logging for this experiment. [2 marks]	
	1	
	2	
	Question 2 continues on the next page	

Turn over ►

box

In circuit 1:

- X is used as a variable resistor with a maximum resistance of 14.9Ω
- when **X** is set to maximum resistance, the resistance of **L** is 2.3 Ω .

In circuit 2, X is used as a potential divider.

IB/M/Jun23/7408/3A

Do not write outside the

box

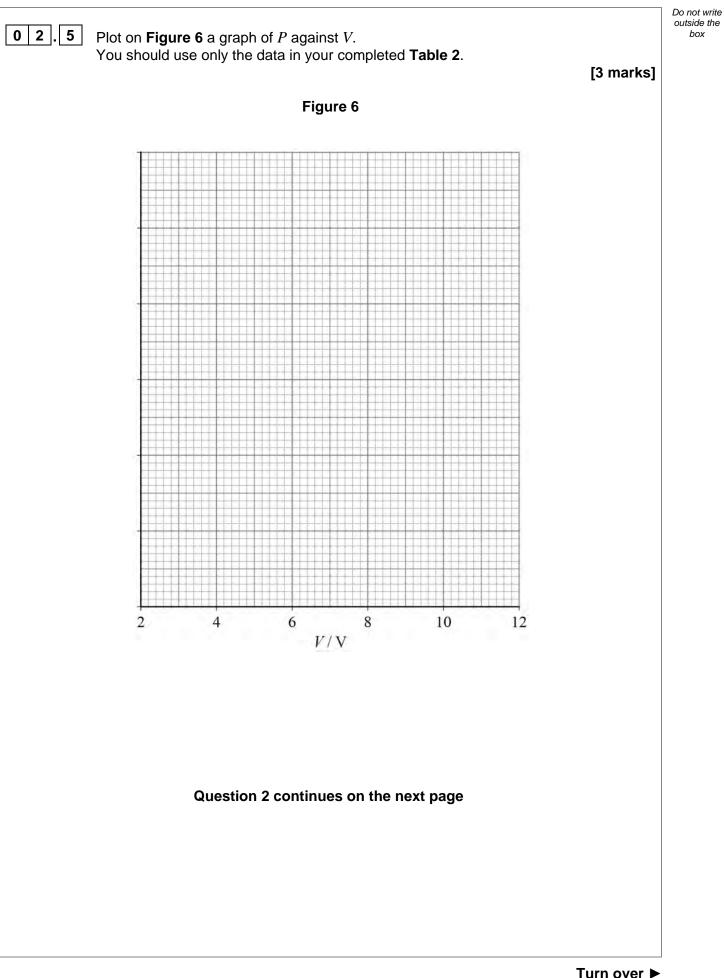
Support your	answer with a calculation.	[4 marks]
		[4 marks]
	Question 2 continues on the next page	

Turn over ►

Do not write outside the box

Table 2 shows some values of V that are plotted on Figure 4 and corresponding results for I and for the power P dissipated in **L**.

Та	ble	2
		_


<i>V</i> / V	<i>I /</i> A	<i>P /</i> W
3.30	1.07	3.53
5.17	1.32	
7.69	1.59	12.2
9.58		
11.47	1.94	22.3

02.4 Complete Table 2.

[3 marks]

Turn over ►

IB/M/Jun23/7408/3A

Do not write outside the

box

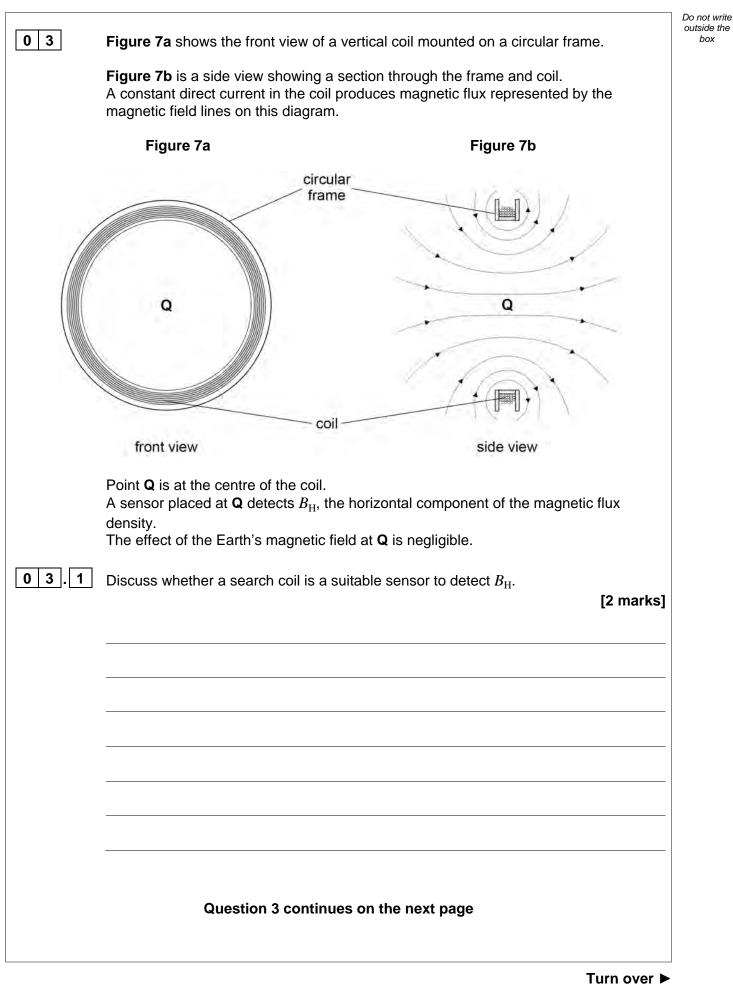
L is connected to a 12 V power supply of negligible internal resistance.

02.6

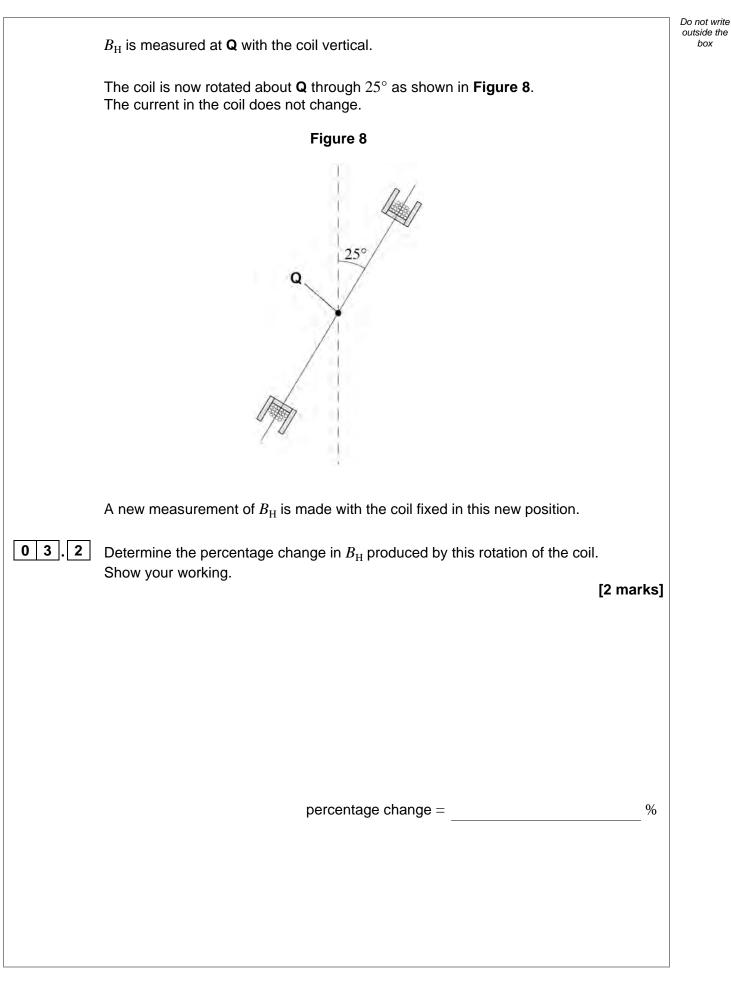
A second lamp, identical to L, is now connected in series with L.

Determine the percentage of $P_{\rm r}$ that is dissipated in this circuit.

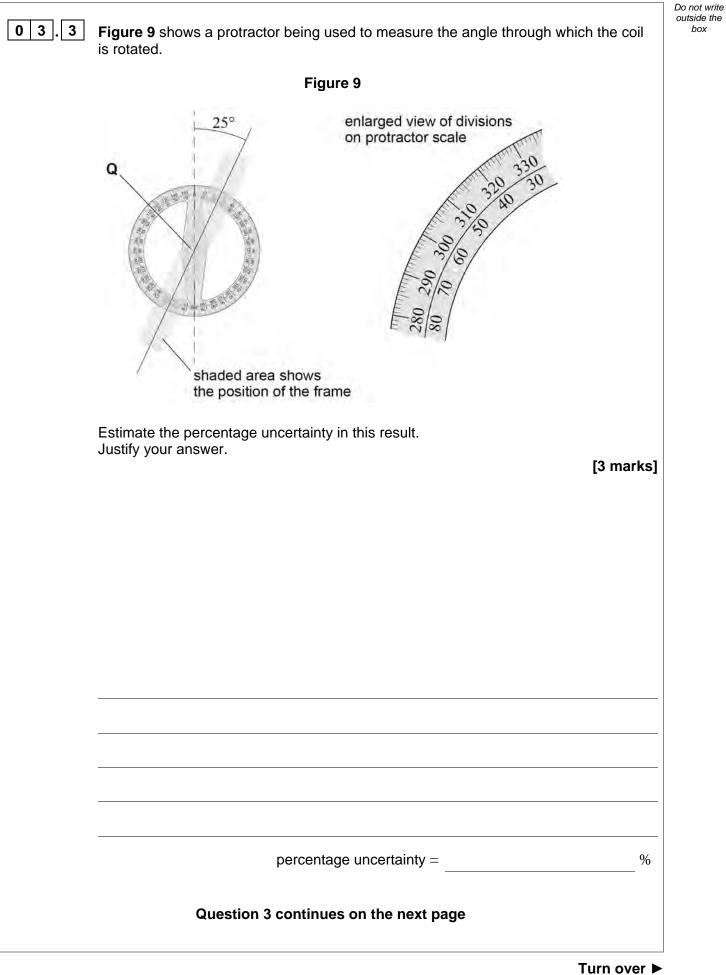
L then dissipates its rated power $P_{\rm r}$.

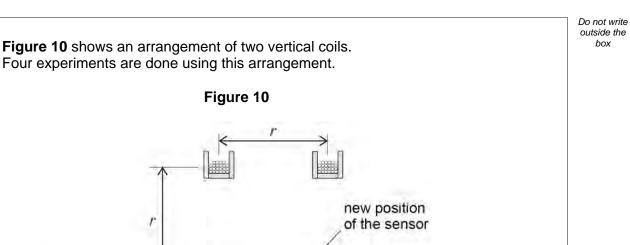

[2 marks]

percentage =


16

%





R

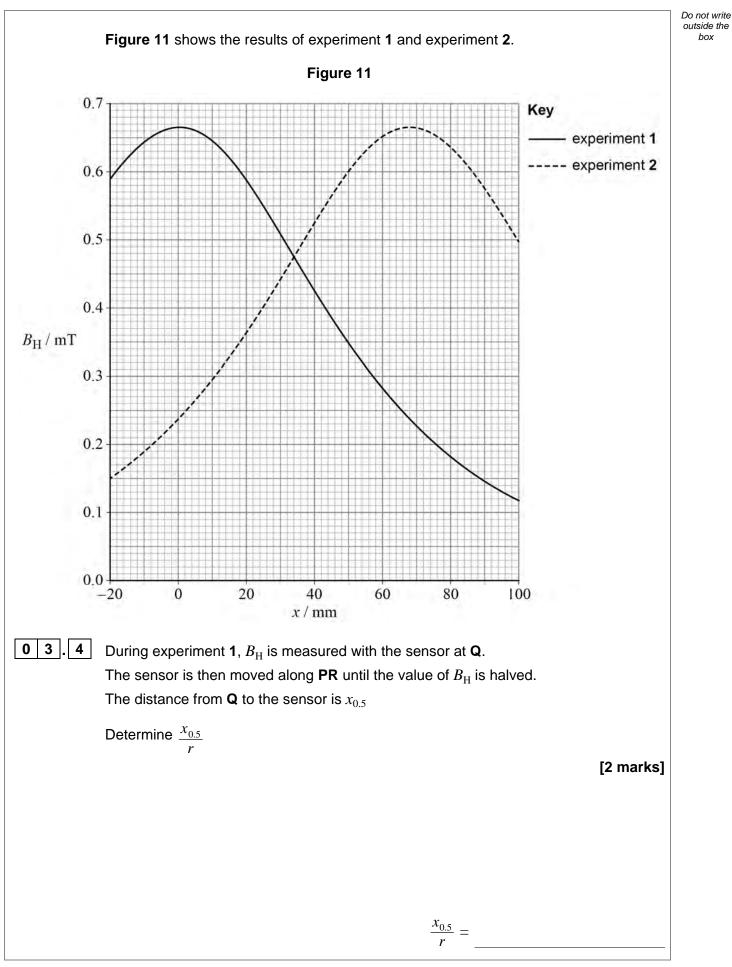
coil 2

Coil **1** and coil **2** are identical and have a radius r. The coils are separated by a distance r and have a common axis **PR**. **Q** is at the centre of coil **1**.

coil 1

P

The four different experiments investigate how $B_{\rm H}$ varies with *x*, the displacement of the sensor from **Q** along **PR**.

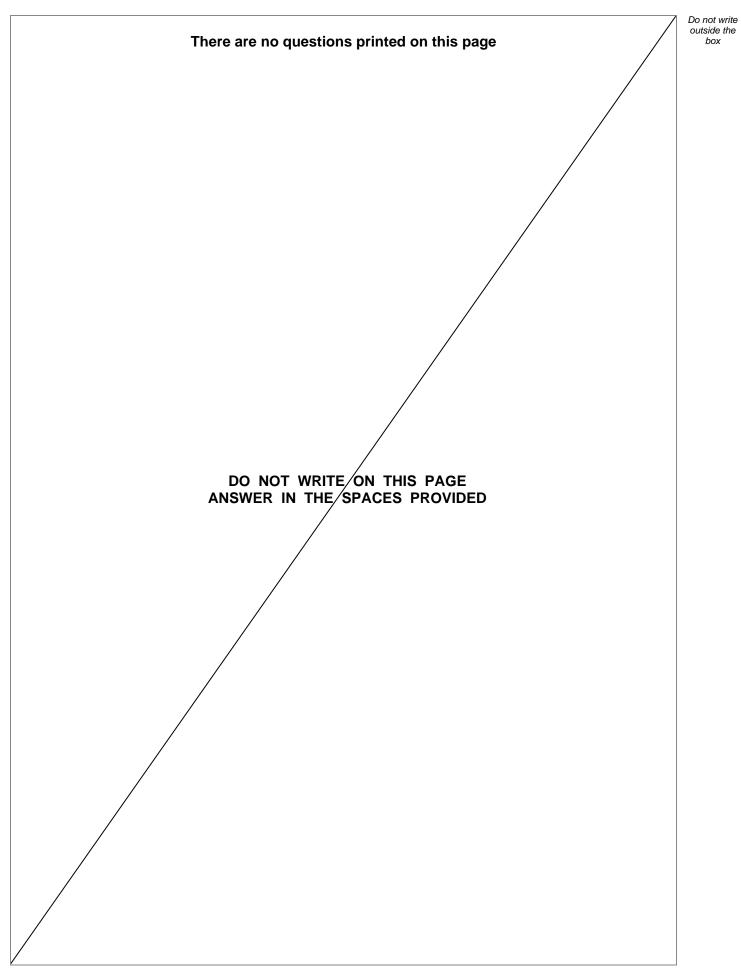

In experiment 1, the current in coil 1 is 225 mA and the current in coil 2 is zero.

х

In experiment 2, the current in coil 1 is zero and the current in coil 2 is 225 mA.

IB/M/Jun23/7408/3A

Do not write outside the box


21

0 3.7

In experiment 4, the current in coil 2 is reversed so that the direction of the magnetic field produced by coil **2** is also reversed. The magnitudes of the currents in coil 1 and coil 2 are still 225 mA. Sketch a graph to show how $B_{\rm H}$ varies between x = 0 and x = r. The *x*-axis has been provided for you. Your graph should include numerical values on your $B_{\rm H}$ axis that correspond to x = 0 and x = r. [3 marks] Ö x / mmEND OF QUESTIONS

16

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

